ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm3.43 GIF version

Theorem pm3.43 544
Description: Theorem *3.43 (Comp) of [WhiteheadRussell] p. 113. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 27-Nov-2013.)
Assertion
Ref Expression
pm3.43 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))

Proof of Theorem pm3.43
StepHypRef Expression
1 pm3.43i 262 . 2 ((𝜑𝜓) → ((𝜑𝜒) → (𝜑 → (𝜓𝜒))))
21imp 119 1 (((𝜑𝜓) ∧ (𝜑𝜒)) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem is referenced by:  jcab  545  sbequilem  1735  eqvinc  2689  eqvincg  2690
  Copyright terms: Public domain W3C validator