ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm4.24 GIF version

Theorem pm4.24 381
Description: Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Revised by NM, 14-Mar-2014.)
Assertion
Ref Expression
pm4.24 (𝜑 ↔ (𝜑𝜑))

Proof of Theorem pm4.24
StepHypRef Expression
1 id 19 . 2 (𝜑𝜑)
21pm4.71i 377 1 (𝜑 ↔ (𝜑𝜑))
Colors of variables: wff set class
Syntax hints:  wa 101  wb 102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem depends on definitions:  df-bi 114
This theorem is referenced by:  anidm  382  anabsan  517  sbidm  1747  euind  2751  reuind  2767
  Copyright terms: Public domain W3C validator