![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm4.71ri | GIF version |
Description: Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.) |
Ref | Expression |
---|---|
pm4.71ri.1 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
pm4.71ri | ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm4.71ri.1 | . 2 ⊢ (𝜑 → 𝜓) | |
2 | pm4.71r 382 | . 2 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 ↔ (𝜓 ∧ 𝜑))) | |
3 | 1, 2 | mpbi 143 | 1 ⊢ (𝜑 ↔ (𝜓 ∧ 𝜑)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: biadan2 444 anabs7 539 orabs 761 prlem2 916 sb6 1809 2moswapdc 2033 exsnrex 3453 eliunxp 4523 asymref 4760 elxp4 4858 elxp5 4859 dffun9 4980 funcnv 5011 funcnv3 5012 f1ompt 5373 eufnfv 5442 dff1o6 5468 abexex 5805 dfoprab4 5870 tpostpos 5934 erovlem 6286 xpsnen 6387 ltbtwnnq 6738 enq0enq 6753 prnmaxl 6810 prnminu 6811 elznn0nn 8516 zrevaddcl 8552 qrevaddcl 8880 climreu 10355 isprm3 10725 isprm4 10726 |
Copyright terms: Public domain | W3C validator |