 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.11dc GIF version

Theorem pm5.11dc 826
 Description: A decidable proposition or its negation implies a second proposition. Based on theorem *5.11 of [WhiteheadRussell] p. 123. (Contributed by Jim Kingdon, 29-Mar-2018.)
Assertion
Ref Expression
pm5.11dc (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ∨ (¬ 𝜑𝜓))))

Proof of Theorem pm5.11dc
StepHypRef Expression
1 dcim 795 . 2 (DECID 𝜑 → (DECID 𝜓DECID (𝜑𝜓)))
2 pm2.5dc 774 . . 3 (DECID 𝜑 → (¬ (𝜑𝜓) → (¬ 𝜑𝜓)))
3 pm2.54dc 801 . . 3 (DECID (𝜑𝜓) → ((¬ (𝜑𝜓) → (¬ 𝜑𝜓)) → ((𝜑𝜓) ∨ (¬ 𝜑𝜓))))
42, 3syl5com 29 . 2 (DECID 𝜑 → (DECID (𝜑𝜓) → ((𝜑𝜓) ∨ (¬ 𝜑𝜓))))
51, 4syld 44 1 (DECID 𝜑 → (DECID 𝜓 → ((𝜑𝜓) ∨ (¬ 𝜑𝜓))))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∨ wo 639  DECID wdc 753 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640 This theorem depends on definitions:  df-bi 114  df-dc 754 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator