ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.31 GIF version

Theorem pm5.31 334
Description: Theorem *5.31 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
Assertion
Ref Expression
pm5.31 ((𝜒 ∧ (𝜑𝜓)) → (𝜑 → (𝜓𝜒)))

Proof of Theorem pm5.31
StepHypRef Expression
1 pm3.21 255 . . 3 (𝜒 → (𝜓 → (𝜓𝜒)))
21imim2d 52 . 2 (𝜒 → ((𝜑𝜓) → (𝜑 → (𝜓𝜒))))
32imp 119 1 ((𝜒 ∧ (𝜑𝜓)) → (𝜑 → (𝜓𝜒)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator