![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pm5.74i | GIF version |
Description: Distribution of implication over biconditional (inference rule). (Contributed by NM, 1-Aug-1994.) |
Ref | Expression |
---|---|
pm5.74i.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
pm5.74i | ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.74i.1 | . 2 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
2 | pm5.74 177 | . 2 ⊢ ((𝜑 → (𝜓 ↔ 𝜒)) ↔ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒))) | |
3 | 1, 2 | mpbi 143 | 1 ⊢ ((𝜑 → 𝜓) ↔ (𝜑 → 𝜒)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 103 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 |
This theorem depends on definitions: df-bi 115 |
This theorem is referenced by: bitrd 186 imbi2i 224 bibi2d 230 ibib 243 ibibr 244 anclb 312 pm5.42 313 ancrb 315 equsalh 1655 equsal 1656 sb6a 1906 ralbiia 2381 raaan 3355 isprm4 10645 |
Copyright terms: Public domain | W3C validator |