ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm5.74ri GIF version

Theorem pm5.74ri 179
Description: Distribution of implication over biconditional (reverse inference rule). (Contributed by NM, 1-Aug-1994.)
Hypothesis
Ref Expression
pm5.74ri.1 ((𝜑𝜓) ↔ (𝜑𝜒))
Assertion
Ref Expression
pm5.74ri (𝜑 → (𝜓𝜒))

Proof of Theorem pm5.74ri
StepHypRef Expression
1 pm5.74ri.1 . 2 ((𝜑𝜓) ↔ (𝜑𝜒))
2 pm5.74 177 . 2 ((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))
31, 2mpbir 144 1 (𝜑 → (𝜓𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  bitrd  186  bibi2d  230  tbt  245  cbval2  1838  sbco2d  1882  sbco2vd  1883  isprm2  10643
  Copyright terms: Public domain W3C validator