ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pm54.43 GIF version

Theorem pm54.43 7039
Description: Theorem *54.43 of [WhiteheadRussell] p. 360. (Contributed by NM, 4-Apr-2007.)
Assertion
Ref Expression
pm54.43 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2o))

Proof of Theorem pm54.43
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1on 6313 . . . . . . . 8 1o ∈ On
21elexi 2693 . . . . . . 7 1o ∈ V
32ensn1 6683 . . . . . 6 {1o} ≈ 1o
43ensymi 6669 . . . . 5 1o ≈ {1o}
5 entr 6671 . . . . 5 ((𝐵 ≈ 1o ∧ 1o ≈ {1o}) → 𝐵 ≈ {1o})
64, 5mpan2 421 . . . 4 (𝐵 ≈ 1o𝐵 ≈ {1o})
71onirri 4453 . . . . . . 7 ¬ 1o ∈ 1o
8 disjsn 3580 . . . . . . 7 ((1o ∩ {1o}) = ∅ ↔ ¬ 1o ∈ 1o)
97, 8mpbir 145 . . . . . 6 (1o ∩ {1o}) = ∅
10 unen 6703 . . . . . 6 (((𝐴 ≈ 1o𝐵 ≈ {1o}) ∧ ((𝐴𝐵) = ∅ ∧ (1o ∩ {1o}) = ∅)) → (𝐴𝐵) ≈ (1o ∪ {1o}))
119, 10mpanr2 434 . . . . 5 (((𝐴 ≈ 1o𝐵 ≈ {1o}) ∧ (𝐴𝐵) = ∅) → (𝐴𝐵) ≈ (1o ∪ {1o}))
1211ex 114 . . . 4 ((𝐴 ≈ 1o𝐵 ≈ {1o}) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1o ∪ {1o})))
136, 12sylan2 284 . . 3 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ (1o ∪ {1o})))
14 df-2o 6307 . . . . 5 2o = suc 1o
15 df-suc 4288 . . . . 5 suc 1o = (1o ∪ {1o})
1614, 15eqtri 2158 . . . 4 2o = (1o ∪ {1o})
1716breq2i 3932 . . 3 ((𝐴𝐵) ≈ 2o ↔ (𝐴𝐵) ≈ (1o ∪ {1o}))
1813, 17syl6ibr 161 . 2 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ → (𝐴𝐵) ≈ 2o))
19 en1 6686 . . 3 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
20 en1 6686 . . 3 (𝐵 ≈ 1o ↔ ∃𝑦 𝐵 = {𝑦})
21 1nen2 6748 . . . . . . . . . . . . 13 ¬ 1o ≈ 2o
2221a1i 9 . . . . . . . . . . . 12 (𝑥 = 𝑦 → ¬ 1o ≈ 2o)
23 unidm 3214 . . . . . . . . . . . . . . . 16 ({𝑥} ∪ {𝑥}) = {𝑥}
24 sneq 3533 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝑦 → {𝑥} = {𝑦})
2524uneq2d 3225 . . . . . . . . . . . . . . . 16 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑥}) = ({𝑥} ∪ {𝑦}))
2623, 25syl5reqr 2185 . . . . . . . . . . . . . . 15 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) = {𝑥})
27 vex 2684 . . . . . . . . . . . . . . . 16 𝑥 ∈ V
2827ensn1 6683 . . . . . . . . . . . . . . 15 {𝑥} ≈ 1o
2926, 28eqbrtrdi 3962 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ({𝑥} ∪ {𝑦}) ≈ 1o)
3029ensymd 6670 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → 1o ≈ ({𝑥} ∪ {𝑦}))
31 entr 6671 . . . . . . . . . . . . 13 ((1o ≈ ({𝑥} ∪ {𝑦}) ∧ ({𝑥} ∪ {𝑦}) ≈ 2o) → 1o ≈ 2o)
3230, 31sylan 281 . . . . . . . . . . . 12 ((𝑥 = 𝑦 ∧ ({𝑥} ∪ {𝑦}) ≈ 2o) → 1o ≈ 2o)
3322, 32mtand 654 . . . . . . . . . . 11 (𝑥 = 𝑦 → ¬ ({𝑥} ∪ {𝑦}) ≈ 2o)
3433necon2ai 2360 . . . . . . . . . 10 (({𝑥} ∪ {𝑦}) ≈ 2o𝑥𝑦)
35 disjsn2 3581 . . . . . . . . . 10 (𝑥𝑦 → ({𝑥} ∩ {𝑦}) = ∅)
3634, 35syl 14 . . . . . . . . 9 (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅)
3736a1i 9 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (({𝑥} ∪ {𝑦}) ≈ 2o → ({𝑥} ∩ {𝑦}) = ∅))
38 uneq12 3220 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∪ {𝑦}))
3938breq1d 3934 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o ↔ ({𝑥} ∪ {𝑦}) ≈ 2o))
40 ineq12 3267 . . . . . . . . 9 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → (𝐴𝐵) = ({𝑥} ∩ {𝑦}))
4140eqeq1d 2146 . . . . . . . 8 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) = ∅ ↔ ({𝑥} ∩ {𝑦}) = ∅))
4237, 39, 413imtr4d 202 . . . . . . 7 ((𝐴 = {𝑥} ∧ 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4342ex 114 . . . . . 6 (𝐴 = {𝑥} → (𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4443exlimdv 1791 . . . . 5 (𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4544exlimiv 1577 . . . 4 (∃𝑥 𝐴 = {𝑥} → (∃𝑦 𝐵 = {𝑦} → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅)))
4645imp 123 . . 3 ((∃𝑥 𝐴 = {𝑥} ∧ ∃𝑦 𝐵 = {𝑦}) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4719, 20, 46syl2anb 289 . 2 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) ≈ 2o → (𝐴𝐵) = ∅))
4818, 47impbid 128 1 ((𝐴 ≈ 1o𝐵 ≈ 1o) → ((𝐴𝐵) = ∅ ↔ (𝐴𝐵) ≈ 2o))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104   = wceq 1331  wex 1468  wcel 1480  wne 2306  cun 3064  cin 3065  c0 3358  {csn 3522   class class class wbr 3924  Oncon0 4280  suc csuc 4282  1oc1o 6299  2oc2o 6300  cen 6625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-1o 6306  df-2o 6307  df-er 6422  df-en 6628
This theorem is referenced by:  pr2nelem  7040  dju1p1e2  7046
  Copyright terms: Public domain W3C validator