![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnf0xnn0 | GIF version |
Description: Positive infinity is an extended nonnegative integer. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
pnf0xnn0 | ⊢ +∞ ∈ ℕ0* |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2083 | . . 3 ⊢ +∞ = +∞ | |
2 | 1 | olci 684 | . 2 ⊢ (+∞ ∈ ℕ0 ∨ +∞ = +∞) |
3 | elxnn0 8490 | . 2 ⊢ (+∞ ∈ ℕ0* ↔ (+∞ ∈ ℕ0 ∨ +∞ = +∞)) | |
4 | 2, 3 | mpbir 144 | 1 ⊢ +∞ ∈ ℕ0* |
Colors of variables: wff set class |
Syntax hints: ∨ wo 662 = wceq 1285 ∈ wcel 1434 +∞cpnf 7282 ℕ0cn0 8425 ℕ0*cxnn0 8488 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-sep 3916 ax-pow 3968 ax-un 4216 ax-cnex 7199 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-rex 2359 df-v 2612 df-un 2986 df-in 2988 df-ss 2995 df-pw 3402 df-sn 3422 df-pr 3423 df-uni 3622 df-pnf 7287 df-xr 7289 df-xnn0 8489 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |