![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pnfnemnf | GIF version |
Description: Plus and minus infinity are different elements of ℝ*. (Contributed by NM, 14-Oct-2005.) |
Ref | Expression |
---|---|
pnfnemnf | ⊢ +∞ ≠ -∞ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfxr 7233 | . . . 4 ⊢ +∞ ∈ ℝ* | |
2 | pwne 3942 | . . . 4 ⊢ (+∞ ∈ ℝ* → 𝒫 +∞ ≠ +∞) | |
3 | 1, 2 | ax-mp 7 | . . 3 ⊢ 𝒫 +∞ ≠ +∞ |
4 | 3 | necomi 2331 | . 2 ⊢ +∞ ≠ 𝒫 +∞ |
5 | df-mnf 7218 | . 2 ⊢ -∞ = 𝒫 +∞ | |
6 | 4, 5 | neeqtrri 2275 | 1 ⊢ +∞ ≠ -∞ |
Colors of variables: wff set class |
Syntax hints: ∈ wcel 1434 ≠ wne 2246 𝒫 cpw 3390 +∞cpnf 7212 -∞cmnf 7213 ℝ*cxr 7214 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-un 4196 ax-cnex 7129 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-nel 2341 df-rex 2355 df-rab 2358 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-uni 3610 df-pnf 7217 df-mnf 7218 df-xr 7219 |
This theorem is referenced by: mnfnepnf 7236 xnn0nemnf 8429 xrnemnf 8929 xrltnr 8931 pnfnlt 8938 nltmnf 8939 ngtmnft 8961 |
Copyright terms: Public domain | W3C validator |