Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  po2nr GIF version

Theorem po2nr 4072
 Description: A partial order relation has no 2-cycle loops. (Contributed by NM, 27-Mar-1997.)
Assertion
Ref Expression
po2nr ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))

Proof of Theorem po2nr
StepHypRef Expression
1 poirr 4070 . . 3 ((𝑅 Po 𝐴𝐵𝐴) → ¬ 𝐵𝑅𝐵)
21adantrr 463 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ 𝐵𝑅𝐵)
3 potr 4071 . . . . . 6 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴𝐵𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))
433exp2 1157 . . . . 5 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐶𝐴 → (𝐵𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵)))))
54com34 82 . . . 4 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐵𝐴 → (𝐶𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵)))))
65pm2.43d 49 . . 3 (𝑅 Po 𝐴 → (𝐵𝐴 → (𝐶𝐴 → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))))
76imp32 253 . 2 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ((𝐵𝑅𝐶𝐶𝑅𝐵) → 𝐵𝑅𝐵))
82, 7mtod 622 1 ((𝑅 Po 𝐴 ∧ (𝐵𝐴𝐶𝐴)) → ¬ (𝐵𝑅𝐶𝐶𝑅𝐵))
 Colors of variables: wff set class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 102   ∈ wcel 1434   class class class wbr 3793   Po wpo 4057 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604  df-un 2978  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-po 4059 This theorem is referenced by:  po3nr  4073  so2nr  4084
 Copyright terms: Public domain W3C validator