ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  poinxp GIF version

Theorem poinxp 4578
Description: Intersection of partial order with cross product of its field. (Contributed by Mario Carneiro, 10-Jul-2014.)
Assertion
Ref Expression
poinxp (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)

Proof of Theorem poinxp
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll 503 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → 𝑥𝐴)
2 brinxp 4577 . . . . . . . 8 ((𝑥𝐴𝑥𝐴) → (𝑥𝑅𝑥𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
31, 1, 2syl2anc 408 . . . . . . 7 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑥𝑅𝑥𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
43notbid 641 . . . . . 6 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (¬ 𝑥𝑅𝑥 ↔ ¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥))
5 brinxp 4577 . . . . . . . . 9 ((𝑥𝐴𝑦𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
65adantr 274 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑥𝑅𝑦𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦))
7 brinxp 4577 . . . . . . . . 9 ((𝑦𝐴𝑧𝐴) → (𝑦𝑅𝑧𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧))
87adantll 467 . . . . . . . 8 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑦𝑅𝑧𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧))
96, 8anbi12d 464 . . . . . . 7 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → ((𝑥𝑅𝑦𝑦𝑅𝑧) ↔ (𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
10 brinxp 4577 . . . . . . . 8 ((𝑥𝐴𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
1110adantlr 468 . . . . . . 7 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (𝑥𝑅𝑧𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))
129, 11imbi12d 233 . . . . . 6 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → (((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧) ↔ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
134, 12anbi12d 464 . . . . 5 (((𝑥𝐴𝑦𝐴) ∧ 𝑧𝐴) → ((¬ 𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ (¬ 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))))
1413ralbidva 2410 . . . 4 ((𝑥𝐴𝑦𝐴) → (∀𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))))
1514ralbidva 2410 . . 3 (𝑥𝐴 → (∀𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑦𝐴𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧))))
1615ralbiia 2426 . 2 (∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)) ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
17 df-po 4188 . 2 (𝑅 Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥𝑅𝑥 ∧ ((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧)))
18 df-po 4188 . 2 ((𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴 ↔ ∀𝑥𝐴𝑦𝐴𝑧𝐴𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑥 ∧ ((𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑦𝑦(𝑅 ∩ (𝐴 × 𝐴))𝑧) → 𝑥(𝑅 ∩ (𝐴 × 𝐴))𝑧)))
1916, 17, 183bitr4i 211 1 (𝑅 Po 𝐴 ↔ (𝑅 ∩ (𝐴 × 𝐴)) Po 𝐴)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wcel 1465  wral 2393  cin 3040   class class class wbr 3899   Po wpo 4186   × cxp 4507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-v 2662  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-br 3900  df-opab 3960  df-po 4188  df-xp 4515
This theorem is referenced by:  soinxp  4579
  Copyright terms: Public domain W3C validator