ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloc GIF version

Theorem prarloc 6791
Description: A Dedekind cut is arithmetically located. Part of Proposition 11.15 of [BauerTaylor], p. 52, slightly modified. It states that given a tolerance 𝑃, there are elements of the lower and upper cut which are within that tolerance of each other.

Usually, proofs will be shorter if they use prarloc2 6792 instead. (Contributed by Jim Kingdon, 22-Oct-2019.)

Assertion
Ref Expression
prarloc ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
Distinct variable groups:   𝐿,𝑎,𝑏   𝑃,𝑎,𝑏   𝑈,𝑎,𝑏

Proof of Theorem prarloc
Dummy variables 𝑚 𝑛 𝑞 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prml 6765 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥Q 𝑥𝐿)
2 df-rex 2359 . . . . . . 7 (∃𝑥Q 𝑥𝐿 ↔ ∃𝑥(𝑥Q𝑥𝐿))
31, 2sylib 120 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑥(𝑥Q𝑥𝐿))
43adantr 270 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑥(𝑥Q𝑥𝐿))
5 prmu 6766 . . . . . . 7 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑦Q 𝑦𝑈)
6 df-rex 2359 . . . . . . 7 (∃𝑦Q 𝑦𝑈 ↔ ∃𝑦(𝑦Q𝑦𝑈))
75, 6sylib 120 . . . . . 6 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑦(𝑦Q𝑦𝑈))
87adantr 270 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑦(𝑦Q𝑦𝑈))
9 subhalfnqq 6702 . . . . . . . . 9 (𝑃Q → ∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃)
109adantl 271 . . . . . . . 8 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃)
11 df-rex 2359 . . . . . . . 8 (∃𝑞Q (𝑞 +Q 𝑞) <Q 𝑃 ↔ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
1210, 11sylib 120 . . . . . . 7 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
1312ancli 316 . . . . . 6 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
14 19.42v 1829 . . . . . 6 (∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)) ↔ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ ∃𝑞(𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
1513, 14sylibr 132 . . . . 5 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)))
16 eeeanv 1851 . . . . 5 (∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ↔ (∃𝑥(𝑥Q𝑥𝐿) ∧ ∃𝑦(𝑦Q𝑦𝑈) ∧ ∃𝑞((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))))
174, 8, 15, 16syl3anbrc 1123 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))))
18 prarloclemarch2 6707 . . . . . . . . . . . . . 14 ((𝑦Q𝑥Q𝑞Q) → ∃𝑛N (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))
19 df-rex 2359 . . . . . . . . . . . . . 14 (∃𝑛N (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))) ↔ ∃𝑛(𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)))))
2018, 19sylib 120 . . . . . . . . . . . . 13 ((𝑦Q𝑥Q𝑞Q) → ∃𝑛(𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)))))
21203com12 1143 . . . . . . . . . . . 12 ((𝑥Q𝑦Q𝑞Q) → ∃𝑛(𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)))))
22213adant1r 1163 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ 𝑦Q𝑞Q) → ∃𝑛(𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)))))
23223adant2r 1165 . . . . . . . . . 10 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ 𝑞Q) → ∃𝑛(𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)))))
24233adant3r 1167 . . . . . . . . 9 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃)) → ∃𝑛(𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)))))
25243adant3l 1166 . . . . . . . 8 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑛(𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)))))
2625ancli 316 . . . . . . 7 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ ∃𝑛(𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))))
27 19.42v 1829 . . . . . . 7 (∃𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) ↔ (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ ∃𝑛(𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))))
2826, 27sylibr 132 . . . . . 6 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))))
29282eximi 1533 . . . . 5 (∃𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))))
3029eximi 1532 . . . 4 (∃𝑥𝑦𝑞((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ∃𝑥𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))))
31 simpl1l 990 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → 𝑥Q)
32 simp3rl 1012 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → 𝑞Q)
3332adantr 270 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → 𝑞Q)
34 simp3rr 1013 . . . . . . . . . . 11 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → (𝑞 +Q 𝑞) <Q 𝑃)
3534adantr 270 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → (𝑞 +Q 𝑞) <Q 𝑃)
3631, 33, 353jca 1119 . . . . . . . . 9 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → (𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
37 simp3ll 1010 . . . . . . . . . . . 12 (((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) → ⟨𝐿, 𝑈⟩ ∈ P)
3837adantr 270 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → ⟨𝐿, 𝑈⟩ ∈ P)
39 simpl1r 991 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → 𝑥𝐿)
40 simprl 498 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → 𝑛N)
41 simprrl 506 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → 1𝑜 <N 𝑛)
42 simprrr 507 . . . . . . . . . . . 12 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → 𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)))
43 simpl2r 993 . . . . . . . . . . . . 13 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → 𝑦𝑈)
44 prcunqu 6773 . . . . . . . . . . . . 13 ((⟨𝐿, 𝑈⟩ ∈ P𝑦𝑈) → (𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)) → (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4538, 43, 44syl2anc 403 . . . . . . . . . . . 12 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → (𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)) → (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4642, 45mpd 13 . . . . . . . . . . 11 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)
47 prarloclem 6789 . . . . . . . . . . 11 (((⟨𝐿, 𝑈⟩ ∈ P𝑥𝐿) ∧ (𝑛N𝑞Q ∧ 1𝑜 <N 𝑛) ∧ (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈) → ∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
4838, 39, 40, 33, 41, 46, 47syl231anc 1190 . . . . . . . . . 10 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → ∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
49 df-rex 2359 . . . . . . . . . 10 (∃𝑚 ∈ ω ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈) ↔ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5048, 49sylib 120 . . . . . . . . 9 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5136, 50jca 300 . . . . . . . 8 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
52 19.42v 1829 . . . . . . . 8 (∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ ∃𝑚(𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
5351, 52sylibr 132 . . . . . . 7 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → ∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
54 simprrl 506 . . . . . . . . . . . 12 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿)
55 eleq1 2145 . . . . . . . . . . . . . . . . 17 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) → (𝑎𝐿 ↔ (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿))
5655anbi1d 453 . . . . . . . . . . . . . . . 16 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) → ((𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈) ↔ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
5756anbi2d 452 . . . . . . . . . . . . . . 15 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) → ((𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)) ↔ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
5857anbi2d 452 . . . . . . . . . . . . . 14 (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) → (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
5958ceqsexgv 2733 . . . . . . . . . . . . 13 ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 → (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
6059biimprcd 158 . . . . . . . . . . . 12 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 → ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6154, 60mpd 13 . . . . . . . . . . 11 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
62 simprrr 507 . . . . . . . . . . 11 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)
63 eleq1 2145 . . . . . . . . . . . . . . . . . 18 (𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) → (𝑏𝑈 ↔ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))
6463anbi2d 452 . . . . . . . . . . . . . . . . 17 (𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) → ((𝑎𝐿𝑏𝑈) ↔ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))
6564anbi2d 452 . . . . . . . . . . . . . . . 16 (𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) → ((𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)) ↔ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))
6665anbi2d 452 . . . . . . . . . . . . . . 15 (𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) → (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) ↔ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))))
6766anbi2d 452 . . . . . . . . . . . . . 14 (𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) → ((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) ↔ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6867exbidv 1748 . . . . . . . . . . . . 13 (𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) → (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) ↔ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
6968ceqsexgv 2733 . . . . . . . . . . . 12 ((𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈 → (∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))))))
7069biimprcd 158 . . . . . . . . . . 11 (∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈)))) → ((𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈 → ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))))))
7161, 62, 70sylc 61 . . . . . . . . . 10 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
72 19.42v 1829 . . . . . . . . . . 11 (∃𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ (𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
7372exbii 1537 . . . . . . . . . 10 (∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) ↔ ∃𝑏(𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∧ ∃𝑎(𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
7471, 73sylibr 132 . . . . . . . . 9 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))))
75 simprrl 506 . . . . . . . . . . . . . 14 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) → 𝑎𝐿)
7675adantl 271 . . . . . . . . . . . . 13 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑎𝐿)
77 simprrr 507 . . . . . . . . . . . . . . 15 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))) → 𝑏𝑈)
7877adantl 271 . . . . . . . . . . . . . 14 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑏𝑈)
79 simpl 107 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))))
80 simprl2 985 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑞Q)
81 simprl3 986 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑞 +Q 𝑞) <Q 𝑃)
8280, 81jca 300 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))
83 simprl1 984 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑥Q)
84 simprrl 506 . . . . . . . . . . . . . . . 16 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑚 ∈ ω)
8583, 84jca 300 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑥Q𝑚 ∈ ω))
86 prarloclemcalc 6790 . . . . . . . . . . . . . . 15 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑥Q𝑚 ∈ ω))) → 𝑏 <Q (𝑎 +Q 𝑃))
8779, 82, 85, 86syl12anc 1168 . . . . . . . . . . . . . 14 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → 𝑏 <Q (𝑎 +Q 𝑃))
8878, 87jca 300 . . . . . . . . . . . . 13 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃)))
8976, 88jca 300 . . . . . . . . . . . 12 (((𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ 𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9089ancom1s 534 . . . . . . . . . . 11 (((𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∧ 𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞))) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈)))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9190anasss 391 . . . . . . . . . 10 ((𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) → (𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
92912eximi 1533 . . . . . . . . 9 (∃𝑏𝑎(𝑏 = (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∧ (𝑎 = (𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∧ ((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ (𝑎𝐿𝑏𝑈))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9374, 92syl 14 . . . . . . . 8 (((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9493exlimiv 1530 . . . . . . 7 (∃𝑚((𝑥Q𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃) ∧ (𝑚 ∈ ω ∧ ((𝑥 +Q0 ([⟨𝑚, 1𝑜⟩] ~Q0 ·Q0 𝑞)) ∈ 𝐿 ∧ (𝑥 +Q ([⟨(𝑚 +𝑜 2𝑜), 1𝑜⟩] ~Q ·Q 𝑞)) ∈ 𝑈))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9553, 94syl 14 . . . . . 6 ((((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9695exlimivv 1819 . . . . 5 (∃𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9796exlimivv 1819 . . . 4 (∃𝑥𝑦𝑞𝑛(((𝑥Q𝑥𝐿) ∧ (𝑦Q𝑦𝑈) ∧ ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) ∧ (𝑞Q ∧ (𝑞 +Q 𝑞) <Q 𝑃))) ∧ (𝑛N ∧ (1𝑜 <N 𝑛𝑦 <Q (𝑥 +Q ([⟨𝑛, 1𝑜⟩] ~Q ·Q 𝑞))))) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
9817, 30, 973syl 17 . . 3 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
99 excom 1595 . . 3 (∃𝑏𝑎(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
10098, 99sylib 120 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
101 19.42v 1829 . . . . 5 (∃𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ (𝑎𝐿 ∧ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
102 df-rex 2359 . . . . . 6 (∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃) ↔ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃)))
103102anbi2i 445 . . . . 5 ((𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)) ↔ (𝑎𝐿 ∧ ∃𝑏(𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))))
104101, 103bitr4i 185 . . . 4 (∃𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ (𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
105104exbii 1537 . . 3 (∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎(𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
106 df-rex 2359 . . 3 (∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃) ↔ ∃𝑎(𝑎𝐿 ∧ ∃𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃)))
107105, 106bitr4i 185 . 2 (∃𝑎𝑏(𝑎𝐿 ∧ (𝑏𝑈𝑏 <Q (𝑎 +Q 𝑃))) ↔ ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
108100, 107sylib 120 1 ((⟨𝐿, 𝑈⟩ ∈ P𝑃Q) → ∃𝑎𝐿𝑏𝑈 𝑏 <Q (𝑎 +Q 𝑃))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wex 1422  wcel 1434  wrex 2354  cop 3420   class class class wbr 3806  ωcom 4360  (class class class)co 5564  1𝑜c1o 6079  2𝑜c2o 6080   +𝑜 coa 6083  [cec 6192  Ncnpi 6560   <N clti 6563   ~Q ceq 6567  Qcnq 6568   +Q cplq 6570   ·Q cmq 6571   <Q cltq 6573   ~Q0 ceq0 6574   +Q0 cplq0 6577   ·Q0 cmq0 6578  Pcnp 6579
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-eprel 4073  df-id 4077  df-po 4080  df-iso 4081  df-iord 4150  df-on 4152  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-recs 5975  df-irdg 6040  df-1o 6086  df-2o 6087  df-oadd 6090  df-omul 6091  df-er 6194  df-ec 6196  df-qs 6200  df-ni 6592  df-pli 6593  df-mi 6594  df-lti 6595  df-plpq 6632  df-mpq 6633  df-enq 6635  df-nqqs 6636  df-plqqs 6637  df-mqqs 6638  df-1nqqs 6639  df-rq 6640  df-ltnqqs 6641  df-enq0 6712  df-nq0 6713  df-0nq0 6714  df-plq0 6715  df-mq0 6716  df-inp 6754
This theorem is referenced by:  prarloc2  6792  addlocpr  6824  prmuloc  6854  ltaddpr  6885  ltexprlemloc  6895  ltexprlemrl  6898  ltexprlemru  6900
  Copyright terms: Public domain W3C validator