![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prarloclem4 | GIF version |
Description: A slight rearrangement of prarloclem3 6749. Lemma for prarloc 6755. (Contributed by Jim Kingdon, 4-Nov-2019.) |
Ref | Expression |
---|---|
prarloclem4 | ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prarloclem3 6749 | . . . . 5 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑥 ∈ ω ∧ 𝑃 ∈ Q) ∧ ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈)) | |
2 | 1 | 3expia 1141 | . . . 4 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑥 ∈ ω ∧ 𝑃 ∈ Q)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
3 | 2 | ancom2s 531 | . . 3 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ (𝑃 ∈ Q ∧ 𝑥 ∈ ω)) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
4 | 3 | anassrs 392 | . 2 ⊢ ((((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) ∧ 𝑥 ∈ ω) → (∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
5 | 4 | rexlimdva 2478 | 1 ⊢ (((〈𝐿, 𝑈〉 ∈ P ∧ 𝐴 ∈ 𝐿) ∧ 𝑃 ∈ Q) → (∃𝑥 ∈ ω ∃𝑦 ∈ ω ((𝐴 +Q0 ([〈𝑦, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈((𝑦 +𝑜 2𝑜) +𝑜 𝑥), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑗 ∈ ω ((𝐴 +Q0 ([〈𝑗, 1𝑜〉] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([〈(𝑗 +𝑜 2𝑜), 1𝑜〉] ~Q ·Q 𝑃)) ∈ 𝑈))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∈ wcel 1434 ∃wrex 2350 〈cop 3409 ωcom 4339 (class class class)co 5543 1𝑜c1o 6058 2𝑜c2o 6059 +𝑜 coa 6062 [cec 6170 ~Q ceq 6531 Qcnq 6532 +Q cplq 6534 ·Q cmq 6535 ~Q0 ceq0 6538 +Q0 cplq0 6541 ·Q0 cmq0 6542 Pcnp 6543 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-coll 3901 ax-sep 3904 ax-nul 3912 ax-pow 3956 ax-pr 3972 ax-un 4196 ax-setind 4288 ax-iinf 4337 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ne 2247 df-ral 2354 df-rex 2355 df-reu 2356 df-rab 2358 df-v 2604 df-sbc 2817 df-csb 2910 df-dif 2976 df-un 2978 df-in 2980 df-ss 2987 df-nul 3259 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-int 3645 df-iun 3688 df-br 3794 df-opab 3848 df-mpt 3849 df-tr 3884 df-eprel 4052 df-id 4056 df-iord 4129 df-on 4131 df-suc 4134 df-iom 4340 df-xp 4377 df-rel 4378 df-cnv 4379 df-co 4380 df-dm 4381 df-rn 4382 df-res 4383 df-ima 4384 df-iota 4897 df-fun 4934 df-fn 4935 df-f 4936 df-f1 4937 df-fo 4938 df-f1o 4939 df-fv 4940 df-ov 5546 df-oprab 5547 df-mpt2 5548 df-1st 5798 df-2nd 5799 df-recs 5954 df-irdg 6019 df-1o 6065 df-2o 6066 df-oadd 6069 df-omul 6070 df-er 6172 df-ec 6174 df-qs 6178 df-ni 6556 df-pli 6557 df-mi 6558 df-lti 6559 df-plpq 6596 df-mpq 6597 df-enq 6599 df-nqqs 6600 df-plqqs 6601 df-mqqs 6602 df-ltnqqs 6605 df-enq0 6676 df-nq0 6677 df-plq0 6679 df-mq0 6680 df-inp 6718 |
This theorem is referenced by: prarloclem 6753 |
Copyright terms: Public domain | W3C validator |