ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemlt GIF version

Theorem prarloclemlt 6822
Description: Two possible ways of contracting an interval which straddles a Dedekind cut. Lemma for prarloc 6832. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
prarloclemlt (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)))

Proof of Theorem prarloclemlt
StepHypRef Expression
1 2onn 6183 . . . . . . . . . . . 12 2𝑜 ∈ ω
2 nnacl 6146 . . . . . . . . . . . 12 ((𝑦 ∈ ω ∧ 2𝑜 ∈ ω) → (𝑦 +𝑜 2𝑜) ∈ ω)
31, 2mpan2 416 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +𝑜 2𝑜) ∈ ω)
4 nnaword1 6175 . . . . . . . . . . 11 (((𝑦 +𝑜 2𝑜) ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +𝑜 2𝑜) ⊆ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
53, 4sylan 277 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +𝑜 2𝑜) ⊆ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
6 1onn 6182 . . . . . . . . . . . . . . 15 1𝑜 ∈ ω
76elexi 2621 . . . . . . . . . . . . . 14 1𝑜 ∈ V
87sucid 4201 . . . . . . . . . . . . 13 1𝑜 ∈ suc 1𝑜
9 df-2o 6088 . . . . . . . . . . . . 13 2𝑜 = suc 1𝑜
108, 9eleqtrri 2158 . . . . . . . . . . . 12 1𝑜 ∈ 2𝑜
11 nnaordi 6170 . . . . . . . . . . . . 13 ((2𝑜 ∈ ω ∧ 𝑦 ∈ ω) → (1𝑜 ∈ 2𝑜 → (𝑦 +𝑜 1𝑜) ∈ (𝑦 +𝑜 2𝑜)))
121, 11mpan 415 . . . . . . . . . . . 12 (𝑦 ∈ ω → (1𝑜 ∈ 2𝑜 → (𝑦 +𝑜 1𝑜) ∈ (𝑦 +𝑜 2𝑜)))
1310, 12mpi 15 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +𝑜 1𝑜) ∈ (𝑦 +𝑜 2𝑜))
1413adantr 270 . . . . . . . . . 10 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +𝑜 1𝑜) ∈ (𝑦 +𝑜 2𝑜))
155, 14sseldd 3010 . . . . . . . . 9 ((𝑦 ∈ ω ∧ 𝑋 ∈ ω) → (𝑦 +𝑜 1𝑜) ∈ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
1615ancoms 264 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +𝑜 1𝑜) ∈ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
17 1pi 6644 . . . . . . . . . . 11 1𝑜N
18 nnppipi 6672 . . . . . . . . . . 11 ((𝑦 ∈ ω ∧ 1𝑜N) → (𝑦 +𝑜 1𝑜) ∈ N)
1917, 18mpan2 416 . . . . . . . . . 10 (𝑦 ∈ ω → (𝑦 +𝑜 1𝑜) ∈ N)
2019adantl 271 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +𝑜 1𝑜) ∈ N)
21 o1p1e2 6134 . . . . . . . . . . . . . 14 (1𝑜 +𝑜 1𝑜) = 2𝑜
22 nnppipi 6672 . . . . . . . . . . . . . . 15 ((1𝑜 ∈ ω ∧ 1𝑜N) → (1𝑜 +𝑜 1𝑜) ∈ N)
236, 17, 22mp2an 417 . . . . . . . . . . . . . 14 (1𝑜 +𝑜 1𝑜) ∈ N
2421, 23eqeltrri 2156 . . . . . . . . . . . . 13 2𝑜N
25 nnppipi 6672 . . . . . . . . . . . . 13 ((𝑦 ∈ ω ∧ 2𝑜N) → (𝑦 +𝑜 2𝑜) ∈ N)
2624, 25mpan2 416 . . . . . . . . . . . 12 (𝑦 ∈ ω → (𝑦 +𝑜 2𝑜) ∈ N)
27 pinn 6638 . . . . . . . . . . . 12 ((𝑦 +𝑜 2𝑜) ∈ N → (𝑦 +𝑜 2𝑜) ∈ ω)
2826, 27syl 14 . . . . . . . . . . 11 (𝑦 ∈ ω → (𝑦 +𝑜 2𝑜) ∈ ω)
29 nnacom 6150 . . . . . . . . . . 11 ((𝑋 ∈ ω ∧ (𝑦 +𝑜 2𝑜) ∈ ω) → (𝑋 +𝑜 (𝑦 +𝑜 2𝑜)) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
3028, 29sylan2 280 . . . . . . . . . 10 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑋 +𝑜 (𝑦 +𝑜 2𝑜)) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
31 nnppipi 6672 . . . . . . . . . . 11 ((𝑋 ∈ ω ∧ (𝑦 +𝑜 2𝑜) ∈ N) → (𝑋 +𝑜 (𝑦 +𝑜 2𝑜)) ∈ N)
3226, 31sylan2 280 . . . . . . . . . 10 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑋 +𝑜 (𝑦 +𝑜 2𝑜)) ∈ N)
3330, 32eqeltrrd 2160 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N)
34 ltpiord 6648 . . . . . . . . 9 (((𝑦 +𝑜 1𝑜) ∈ N ∧ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N) → ((𝑦 +𝑜 1𝑜) <N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ↔ (𝑦 +𝑜 1𝑜) ∈ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
3520, 33, 34syl2anc 403 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +𝑜 1𝑜) <N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ↔ (𝑦 +𝑜 1𝑜) ∈ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
3616, 35mpbird 165 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (𝑦 +𝑜 1𝑜) <N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
37 mulidpi 6647 . . . . . . . . 9 ((𝑦 +𝑜 1𝑜) ∈ N → ((𝑦 +𝑜 1𝑜) ·N 1𝑜) = (𝑦 +𝑜 1𝑜))
3820, 37syl 14 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +𝑜 1𝑜) ·N 1𝑜) = (𝑦 +𝑜 1𝑜))
39 mulcompig 6660 . . . . . . . . . 10 ((((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N ∧ 1𝑜N) → (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ·N 1𝑜) = (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
4033, 17, 39sylancl 404 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ·N 1𝑜) = (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
41 mulidpi 6647 . . . . . . . . . 10 (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N → (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ·N 1𝑜) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
4233, 41syl 14 . . . . . . . . 9 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ·N 1𝑜) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
4340, 42eqtr3d 2117 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)) = ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))
4438, 43breq12d 3819 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → (((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)) ↔ (𝑦 +𝑜 1𝑜) <N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
4536, 44mpbird 165 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋)))
46 simpr 108 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → 𝑦 ∈ ω)
47 ordpipqqs 6703 . . . . . . . . . 10 ((((𝑦 +𝑜 1𝑜) ∈ N ∧ 1𝑜N) ∧ (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N ∧ 1𝑜N)) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))))
4817, 47mpanl2 426 . . . . . . . . 9 (((𝑦 +𝑜 1𝑜) ∈ N ∧ (((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N ∧ 1𝑜N)) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))))
4917, 48mpanr2 429 . . . . . . . 8 (((𝑦 +𝑜 1𝑜) ∈ N ∧ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))))
5019, 49sylan 277 . . . . . . 7 ((𝑦 ∈ ω ∧ ((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))))
5146, 33, 50syl2anc 403 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ ((𝑦 +𝑜 1𝑜) ·N 1𝑜) <N (1𝑜 ·N ((𝑦 +𝑜 2𝑜) +𝑜 𝑋))))
5245, 51mpbird 165 . . . . 5 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q )
5352adantlr 461 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q )
54 opelxpi 4423 . . . . . . . . 9 (((𝑦 +𝑜 1𝑜) ∈ N ∧ 1𝑜N) → ⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩ ∈ (N × N))
5520, 17, 54sylancl 404 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩ ∈ (N × N))
56 enqex 6689 . . . . . . . . 9 ~Q ∈ V
5756ecelqsi 6249 . . . . . . . 8 (⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩ ∈ (N × N) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
5855, 57syl 14 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
59 df-nqqs 6677 . . . . . . 7 Q = ((N × N) / ~Q )
6058, 59syl6eleqr 2176 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~QQ)
6160adantlr 461 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~QQ)
62 opelxpi 4423 . . . . . . . . 9 ((((𝑦 +𝑜 2𝑜) +𝑜 𝑋) ∈ N ∧ 1𝑜N) → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩ ∈ (N × N))
6333, 17, 62sylancl 404 . . . . . . . 8 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → ⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩ ∈ (N × N))
6456ecelqsi 6249 . . . . . . . 8 (⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩ ∈ (N × N) → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
6563, 64syl 14 . . . . . . 7 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ∈ ((N × N) / ~Q ))
6665, 59syl6eleqr 2176 . . . . . 6 ((𝑋 ∈ ω ∧ 𝑦 ∈ ω) → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~QQ)
6766adantlr 461 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~QQ)
68 simplr3 983 . . . . 5 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝑃Q)
69 ltmnqg 6730 . . . . 5 (([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~QQ ∧ [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~QQ𝑃Q) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ (𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q )))
7061, 67, 68, 69syl3anc 1170 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q <Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ↔ (𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q )))
7153, 70mpbid 145 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ))
72 mulcomnqg 6712 . . . . 5 ((𝑃Q ∧ [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~QQ) → (𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) = ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃))
7368, 61, 72syl2anc 403 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) = ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃))
74 mulcomnqg 6712 . . . . 5 ((𝑃Q ∧ [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~QQ) → (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))
7568, 67, 74syl2anc 403 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ) = ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))
7673, 75breq12d 3819 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝑃 ·Q [⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ) <Q (𝑃 ·Q [⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ) ↔ ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)))
7771, 76mpbid 145 . 2 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))
78 mulclnq 6705 . . . 4 (([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~QQ𝑃Q) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q)
7961, 68, 78syl2anc 403 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q)
80 mulclnq 6705 . . . 4 (([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~QQ𝑃Q) → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q)
8167, 68, 80syl2anc 403 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q)
82 simplr1 981 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ⟨𝐿, 𝑈⟩ ∈ P)
83 simplr2 982 . . . 4 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴𝐿)
84 elprnql 6810 . . . 4 ((⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿) → 𝐴Q)
8582, 83, 84syl2anc 403 . . 3 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → 𝐴Q)
86 ltanqg 6729 . . 3 ((([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q ∧ ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃) ∈ Q𝐴Q) → (([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃) ↔ (𝐴 +Q ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))))
8779, 81, 85, 86syl3anc 1170 . 2 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃) <Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃) ↔ (𝐴 +Q ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃))))
8877, 87mpbid 145 1 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → (𝐴 +Q ([⟨(𝑦 +𝑜 1𝑜), 1𝑜⟩] ~Q ·Q 𝑃)) <Q (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  wss 2983  cop 3420   class class class wbr 3806  suc csuc 4149  ωcom 4360   × cxp 4390  (class class class)co 5565  1𝑜c1o 6080  2𝑜c2o 6081   +𝑜 coa 6084  [cec 6193   / cqs 6194  Ncnpi 6601   ·N cmi 6603   <N clti 6604   ~Q ceq 6608  Qcnq 6609   +Q cplq 6611   ·Q cmq 6612   <Q cltq 6614  Pcnp 6620
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2613  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-eprel 4073  df-id 4077  df-iord 4150  df-on 4152  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-1st 5820  df-2nd 5821  df-recs 5976  df-irdg 6041  df-1o 6087  df-2o 6088  df-oadd 6091  df-omul 6092  df-er 6195  df-ec 6197  df-qs 6201  df-ni 6633  df-pli 6634  df-mi 6635  df-lti 6636  df-plpq 6673  df-mpq 6674  df-enq 6676  df-nqqs 6677  df-plqqs 6678  df-mqqs 6679  df-ltnqqs 6682  df-inp 6795
This theorem is referenced by:  prarloclem3step  6825
  Copyright terms: Public domain W3C validator