ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prarloclemup GIF version

Theorem prarloclemup 6621
Description: Contracting the upper side of an interval which straddles a Dedekind cut. Lemma for prarloc 6629. (Contributed by Jim Kingdon, 10-Nov-2019.)
Assertion
Ref Expression
prarloclemup (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))

Proof of Theorem prarloclemup
StepHypRef Expression
1 simpllr 494 . . 3 (((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ∧ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → 𝑦 ∈ ω)
2 simprl 491 . . 3 (((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ∧ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → (𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿)
3 simplr 490 . . 3 (((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ∧ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)
4 rspe 2385 . . 3 ((𝑦 ∈ ω ∧ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
51, 2, 3, 4syl12anc 1142 . 2 (((((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) ∧ ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈)) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))
65exp31 350 1 (((𝑋 ∈ ω ∧ (⟨𝐿, 𝑈⟩ ∈ P𝐴𝐿𝑃Q)) ∧ 𝑦 ∈ ω) → ((𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈 → (((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 suc 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈) → ∃𝑦 ∈ ω ((𝐴 +Q0 ([⟨𝑦, 1𝑜⟩] ~Q0 ·Q0 𝑃)) ∈ 𝐿 ∧ (𝐴 +Q ([⟨((𝑦 +𝑜 2𝑜) +𝑜 𝑋), 1𝑜⟩] ~Q ·Q 𝑃)) ∈ 𝑈))))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 894  wcel 1407  wrex 2322  cop 3403  suc csuc 4127  ωcom 4338  (class class class)co 5537  1𝑜c1o 6022  2𝑜c2o 6023   +𝑜 coa 6026  [cec 6132   ~Q ceq 6405  Qcnq 6406   +Q cplq 6408   ·Q cmq 6409   ~Q0 ceq0 6412   +Q0 cplq0 6415   ·Q0 cmq0 6416  Pcnp 6417
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-gen 1352  ax-ie1 1396  ax-ie2 1397  ax-4 1414
This theorem depends on definitions:  df-bi 114  df-rex 2327
This theorem is referenced by:  prarloclem3step  6622
  Copyright terms: Public domain W3C validator