ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prid2 GIF version

Theorem prid2 3504
Description: An unordered pair contains its second member. Part of Theorem 7.6 of [Quine] p. 49. (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
prid2.1 𝐵 ∈ V
Assertion
Ref Expression
prid2 𝐵 ∈ {𝐴, 𝐵}

Proof of Theorem prid2
StepHypRef Expression
1 prid2.1 . . 3 𝐵 ∈ V
21prid1 3503 . 2 𝐵 ∈ {𝐵, 𝐴}
3 prcom 3473 . 2 {𝐵, 𝐴} = {𝐴, 𝐵}
42, 3eleqtri 2128 1 𝐵 ∈ {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:  wcel 1409  Vcvv 2574  {cpr 3403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-un 2949  df-sn 3408  df-pr 3409
This theorem is referenced by:  prel12  3569  opi2  3997  opeluu  4209  ontr2exmid  4277  onsucelsucexmid  4282  regexmidlemm  4284  ordtri2or2exmid  4323  dmrnssfld  4622  funopg  4961  acexmidlema  5530  acexmidlemcase  5534  acexmidlem2  5536  2dom  6315  cnelprrecn  7074  mnfxr  8794  m1expcl2  9436  bdop  10354
  Copyright terms: Public domain W3C validator