ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prime GIF version

Theorem prime 9150
Description: Two ways to express "𝐴 is a prime number (or 1)." (Contributed by NM, 4-May-2005.)
Assertion
Ref Expression
prime (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
Distinct variable group:   𝑥,𝐴

Proof of Theorem prime
StepHypRef Expression
1 nnz 9073 . . . . . . 7 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
2 1z 9080 . . . . . . . 8 1 ∈ ℤ
3 zdceq 9126 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 1 ∈ ℤ) → DECID 𝑥 = 1)
42, 3mpan2 421 . . . . . . 7 (𝑥 ∈ ℤ → DECID 𝑥 = 1)
5 dfordc 877 . . . . . . . 8 (DECID 𝑥 = 1 → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (¬ 𝑥 = 1 → 𝑥 = 𝐴)))
6 df-ne 2309 . . . . . . . . 9 (𝑥 ≠ 1 ↔ ¬ 𝑥 = 1)
76imbi1i 237 . . . . . . . 8 ((𝑥 ≠ 1 → 𝑥 = 𝐴) ↔ (¬ 𝑥 = 1 → 𝑥 = 𝐴))
85, 7syl6bbr 197 . . . . . . 7 (DECID 𝑥 = 1 → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴)))
91, 4, 83syl 17 . . . . . 6 (𝑥 ∈ ℕ → ((𝑥 = 1 ∨ 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → 𝑥 = 𝐴)))
109imbi2d 229 . . . . 5 (𝑥 ∈ ℕ → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴))))
11 impexp 261 . . . . . 6 (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ (𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)))
12 bi2.04 247 . . . . . 6 ((𝑥 ≠ 1 → ((𝐴 / 𝑥) ∈ ℕ → 𝑥 = 𝐴)) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴)))
1311, 12bitri 183 . . . . 5 (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 ≠ 1 → 𝑥 = 𝐴)))
1410, 13syl6bbr 197 . . . 4 (𝑥 ∈ ℕ → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
1514adantl 275 . . 3 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
16 nngt1ne1 8755 . . . . . . 7 (𝑥 ∈ ℕ → (1 < 𝑥𝑥 ≠ 1))
1716adantl 275 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (1 < 𝑥𝑥 ≠ 1))
1817anbi1d 460 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ)))
19 nnz 9073 . . . . . . . . 9 ((𝐴 / 𝑥) ∈ ℕ → (𝐴 / 𝑥) ∈ ℤ)
20 nnre 8727 . . . . . . . . . . . . 13 (𝑥 ∈ ℕ → 𝑥 ∈ ℝ)
21 gtndiv 9146 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ ∧ 𝐴 < 𝑥) → ¬ (𝐴 / 𝑥) ∈ ℤ)
22213expia 1183 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ))
2320, 22sylan 281 . . . . . . . . . . . 12 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝐴 < 𝑥 → ¬ (𝐴 / 𝑥) ∈ ℤ))
2423con2d 613 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → ¬ 𝐴 < 𝑥))
25 nnre 8727 . . . . . . . . . . . 12 (𝐴 ∈ ℕ → 𝐴 ∈ ℝ)
26 lenlt 7840 . . . . . . . . . . . 12 ((𝑥 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
2720, 25, 26syl2an 287 . . . . . . . . . . 11 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → (𝑥𝐴 ↔ ¬ 𝐴 < 𝑥))
2824, 27sylibrd 168 . . . . . . . . . 10 ((𝑥 ∈ ℕ ∧ 𝐴 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥𝐴))
2928ancoms 266 . . . . . . . . 9 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℤ → 𝑥𝐴))
3019, 29syl5 32 . . . . . . . 8 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ → 𝑥𝐴))
3130pm4.71rd 391 . . . . . . 7 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝐴 / 𝑥) ∈ ℕ ↔ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3231anbi2d 459 . . . . . 6 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ))))
33 3anass 966 . . . . . 6 ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥 ∧ (𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3432, 33syl6bbr 197 . . . . 5 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((1 < 𝑥 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3518, 34bitr3d 189 . . . 4 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → ((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) ↔ (1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ)))
3635imbi1d 230 . . 3 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝑥 ≠ 1 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴) ↔ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
3715, 36bitrd 187 . 2 ((𝐴 ∈ ℕ ∧ 𝑥 ∈ ℕ) → (((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
3837ralbidva 2433 1 (𝐴 ∈ ℕ → (∀𝑥 ∈ ℕ ((𝐴 / 𝑥) ∈ ℕ → (𝑥 = 1 ∨ 𝑥 = 𝐴)) ↔ ∀𝑥 ∈ ℕ ((1 < 𝑥𝑥𝐴 ∧ (𝐴 / 𝑥) ∈ ℕ) → 𝑥 = 𝐴)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697  DECID wdc 819  w3a 962   = wceq 1331  wcel 1480  wne 2308  wral 2416   class class class wbr 3929  (class class class)co 5774  cr 7619  1c1 7621   < clt 7800  cle 7801   / cdiv 8432  cn 8720  cz 9054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator