![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > prmdvdsexpr | GIF version |
Description: If a prime divides a nonnegative power of another, then they are equal. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
prmdvdsexpr | ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elnn0 8409 | . . 3 ⊢ (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0)) | |
2 | prmdvdsexpb 10735 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 = 𝑄)) | |
3 | 2 | biimpd 142 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) |
4 | 3 | 3expia 1141 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ ℕ → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
5 | prmnn 10699 | . . . . . . . . . 10 ⊢ (𝑄 ∈ ℙ → 𝑄 ∈ ℕ) | |
6 | 5 | adantl 271 | . . . . . . . . 9 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℕ) |
7 | 6 | nncnd 8172 | . . . . . . . 8 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → 𝑄 ∈ ℂ) |
8 | 7 | exp0d 9748 | . . . . . . 7 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑄↑0) = 1) |
9 | 8 | breq2d 3817 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ (𝑄↑0) ↔ 𝑃 ∥ 1)) |
10 | nprmdvds1 10728 | . . . . . . . 8 ⊢ (𝑃 ∈ ℙ → ¬ 𝑃 ∥ 1) | |
11 | 10 | pm2.21d 582 | . . . . . . 7 ⊢ (𝑃 ∈ ℙ → (𝑃 ∥ 1 → 𝑃 = 𝑄)) |
12 | 11 | adantr 270 | . . . . . 6 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ 1 → 𝑃 = 𝑄)) |
13 | 9, 12 | sylbid 148 | . . . . 5 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑃 ∥ (𝑄↑0) → 𝑃 = 𝑄)) |
14 | oveq2 5571 | . . . . . . 7 ⊢ (𝑁 = 0 → (𝑄↑𝑁) = (𝑄↑0)) | |
15 | 14 | breq2d 3817 | . . . . . 6 ⊢ (𝑁 = 0 → (𝑃 ∥ (𝑄↑𝑁) ↔ 𝑃 ∥ (𝑄↑0))) |
16 | 15 | imbi1d 229 | . . . . 5 ⊢ (𝑁 = 0 → ((𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄) ↔ (𝑃 ∥ (𝑄↑0) → 𝑃 = 𝑄))) |
17 | 13, 16 | syl5ibrcom 155 | . . . 4 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 = 0 → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
18 | 4, 17 | jaod 670 | . . 3 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
19 | 1, 18 | syl5bi 150 | . 2 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ) → (𝑁 ∈ ℕ0 → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄))) |
20 | 19 | 3impia 1136 | 1 ⊢ ((𝑃 ∈ ℙ ∧ 𝑄 ∈ ℙ ∧ 𝑁 ∈ ℕ0) → (𝑃 ∥ (𝑄↑𝑁) → 𝑃 = 𝑄)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ∨ wo 662 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 class class class wbr 3805 (class class class)co 5563 0cc0 7095 1c1 7096 ℕcn 8158 ℕ0cn0 8407 ↑cexp 9624 ∥ cdvds 10403 ℙcprime 10696 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-nul 3924 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-iinf 4357 ax-cnex 7181 ax-resscn 7182 ax-1cn 7183 ax-1re 7184 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-mulrcl 7189 ax-addcom 7190 ax-mulcom 7191 ax-addass 7192 ax-mulass 7193 ax-distr 7194 ax-i2m1 7195 ax-0lt1 7196 ax-1rid 7197 ax-0id 7198 ax-rnegex 7199 ax-precex 7200 ax-cnre 7201 ax-pre-ltirr 7202 ax-pre-ltwlin 7203 ax-pre-lttrn 7204 ax-pre-apti 7205 ax-pre-ltadd 7206 ax-pre-mulgt0 7207 ax-pre-mulext 7208 ax-arch 7209 ax-caucvg 7210 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-if 3369 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-id 4076 df-po 4079 df-iso 4080 df-iord 4149 df-on 4151 df-ilim 4152 df-suc 4154 df-iom 4360 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-riota 5519 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-1st 5818 df-2nd 5819 df-recs 5974 df-frec 6060 df-1o 6085 df-2o 6086 df-er 6193 df-en 6309 df-sup 6491 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 df-le 7273 df-sub 7400 df-neg 7401 df-reap 7794 df-ap 7801 df-div 7880 df-inn 8159 df-2 8217 df-3 8218 df-4 8219 df-n0 8408 df-z 8485 df-uz 8753 df-q 8838 df-rp 8868 df-fz 9158 df-fzo 9282 df-fl 9404 df-mod 9457 df-iseq 9574 df-iexp 9625 df-cj 9930 df-re 9931 df-im 9932 df-rsqrt 10085 df-abs 10086 df-dvds 10404 df-gcd 10546 df-prm 10697 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |