ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloc GIF version

Theorem prmuloc 6721
Description: Positive reals are multiplicatively located. Lemma 12.8 of [BauerTaylor], p. 56. (Contributed by Jim Kingdon, 8-Dec-2019.)
Assertion
Ref Expression
prmuloc ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
Distinct variable groups:   𝐴,𝑑,𝑢   𝐵,𝑑,𝑢   𝐿,𝑑,𝑢   𝑈,𝑑,𝑢

Proof of Theorem prmuloc
Dummy variables 𝑝 𝑟 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ltexnqi 6564 . . 3 (𝐴 <Q 𝐵 → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
21adantl 266 . 2 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∃𝑥Q (𝐴 +Q 𝑥) = 𝐵)
3 prml 6632 . . . 4 (⟨𝐿, 𝑈⟩ ∈ P → ∃𝑟Q 𝑟𝐿)
43ad2antrr 465 . . 3 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) → ∃𝑟Q 𝑟𝐿)
5 simprl 491 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝑟Q)
6 simplrl 495 . . . . . 6 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝑥Q)
7 mulclnq 6531 . . . . . 6 ((𝑟Q𝑥Q) → (𝑟 ·Q 𝑥) ∈ Q)
85, 6, 7syl2anc 397 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → (𝑟 ·Q 𝑥) ∈ Q)
9 ltrelnq 6520 . . . . . . . 8 <Q ⊆ (Q × Q)
109brel 4419 . . . . . . 7 (𝐴 <Q 𝐵 → (𝐴Q𝐵Q))
1110simprd 111 . . . . . 6 (𝐴 <Q 𝐵𝐵Q)
1211ad3antlr 470 . . . . 5 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝐵Q)
13 appdiv0nq 6719 . . . . 5 (((𝑟 ·Q 𝑥) ∈ Q𝐵Q) → ∃𝑝Q (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))
148, 12, 13syl2anc 397 . . . 4 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → ∃𝑝Q (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))
15 prarloc 6658 . . . . . . . . . 10 ((⟨𝐿, 𝑈⟩ ∈ P𝑝Q) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
1615adantlr 454 . . . . . . . . 9 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑝Q) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
1716adantlr 454 . . . . . . . 8 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ 𝑝Q) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
1817ad2ant2r 486 . . . . . . 7 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝))
19 r2ex 2361 . . . . . . 7 (∃𝑑𝐿𝑢𝑈 𝑢 <Q (𝑑 +Q 𝑝) ↔ ∃𝑑𝑢((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)))
2018, 19sylib 131 . . . . . 6 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑𝑢((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)))
21 elprnql 6636 . . . . . . . . . . . . . 14 ((⟨𝐿, 𝑈⟩ ∈ P𝑑𝐿) → 𝑑Q)
2221adantlr 454 . . . . . . . . . . . . 13 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑑𝐿) → 𝑑Q)
2322adantlr 454 . . . . . . . . . . . 12 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ 𝑑𝐿) → 𝑑Q)
2423adantlr 454 . . . . . . . . . . 11 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ 𝑑𝐿) → 𝑑Q)
2524ad2ant2r 486 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ (𝑑𝐿𝑢𝑈)) → 𝑑Q)
2625adantrr 456 . . . . . . . . 9 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑑Q)
27 simplll 493 . . . . . . . . . . 11 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → ⟨𝐿, 𝑈⟩ ∈ P)
2827ad2antrr 465 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → ⟨𝐿, 𝑈⟩ ∈ P)
29 simprl 491 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑑𝐿𝑢𝑈))
3029simprd 111 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑢𝑈)
31 elprnqu 6637 . . . . . . . . . 10 ((⟨𝐿, 𝑈⟩ ∈ P𝑢𝑈) → 𝑢Q)
3228, 30, 31syl2anc 397 . . . . . . . . 9 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑢Q)
33 prltlu 6642 . . . . . . . . . . . . . . . . 17 ((⟨𝐿, 𝑈⟩ ∈ P𝑟𝐿𝑢𝑈) → 𝑟 <Q 𝑢)
34333adant1r 1139 . . . . . . . . . . . . . . . 16 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ 𝑟𝐿𝑢𝑈) → 𝑟 <Q 𝑢)
35343adant2l 1140 . . . . . . . . . . . . . . 15 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑟Q𝑟𝐿) ∧ 𝑢𝑈) → 𝑟 <Q 𝑢)
36353adant3l 1142 . . . . . . . . . . . . . 14 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑟Q𝑟𝐿) ∧ (𝑑𝐿𝑢𝑈)) → 𝑟 <Q 𝑢)
37363adant1r 1139 . . . . . . . . . . . . 13 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿) ∧ (𝑑𝐿𝑢𝑈)) → 𝑟 <Q 𝑢)
38373expa 1115 . . . . . . . . . . . 12 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑑𝐿𝑢𝑈)) → 𝑟 <Q 𝑢)
3938ad2ant2r 486 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑟 <Q 𝑢)
40 simprr 492 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑢 <Q (𝑑 +Q 𝑝))
41 simplrr 496 . . . . . . . . . . . 12 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → (𝐴 +Q 𝑥) = 𝐵)
4241ad2antrr 465 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝐴 +Q 𝑥) = 𝐵)
43 simplrr 496 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))
4410simpld 109 . . . . . . . . . . . . 13 (𝐴 <Q 𝐵𝐴Q)
4544ad3antlr 470 . . . . . . . . . . . 12 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → 𝐴Q)
4645ad2antrr 465 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝐴Q)
4712ad2antrr 465 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝐵Q)
48 simplrl 495 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑝Q)
496ad2antrr 465 . . . . . . . . . . 11 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → 𝑥Q)
5039, 40, 42, 43, 46, 47, 26, 48, 49prmuloclemcalc 6720 . . . . . . . . . 10 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))
51 df-3an 898 . . . . . . . . . 10 ((𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)) ↔ ((𝑑𝐿𝑢𝑈) ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
5229, 50, 51sylanbrc 402 . . . . . . . . 9 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
5326, 32, 52jca31 296 . . . . . . . 8 ((((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) ∧ ((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝))) → ((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))))
5453ex 112 . . . . . . 7 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → (((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)) → ((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))))
55542eximdv 1778 . . . . . 6 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → (∃𝑑𝑢((𝑑𝐿𝑢𝑈) ∧ 𝑢 <Q (𝑑 +Q 𝑝)) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))))
5620, 55mpd 13 . . . . 5 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))))
57 r2ex 2361 . . . . 5 (∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)) ↔ ∃𝑑𝑢((𝑑Q𝑢Q) ∧ (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵))))
5856, 57sylibr 141 . . . 4 (((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) ∧ (𝑝Q ∧ (𝑝 ·Q 𝐵) <Q (𝑟 ·Q 𝑥))) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
5914, 58rexlimddv 2454 . . 3 ((((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) ∧ (𝑟Q𝑟𝐿)) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
604, 59rexlimddv 2454 . 2 (((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) ∧ (𝑥Q ∧ (𝐴 +Q 𝑥) = 𝐵)) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
612, 60rexlimddv 2454 1 ((⟨𝐿, 𝑈⟩ ∈ P𝐴 <Q 𝐵) → ∃𝑑Q𝑢Q (𝑑𝐿𝑢𝑈 ∧ (𝑢 ·Q 𝐴) <Q (𝑑 ·Q 𝐵)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  w3a 896   = wceq 1259  wex 1397  wcel 1409  wrex 2324  cop 3405   class class class wbr 3791  (class class class)co 5539  Qcnq 6435   +Q cplq 6437   ·Q cmq 6438   <Q cltq 6440  Pcnp 6446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3899  ax-sep 3902  ax-nul 3910  ax-pow 3954  ax-pr 3971  ax-un 4197  ax-setind 4289  ax-iinf 4338
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2787  df-csb 2880  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-uni 3608  df-int 3643  df-iun 3686  df-br 3792  df-opab 3846  df-mpt 3847  df-tr 3882  df-eprel 4053  df-id 4057  df-po 4060  df-iso 4061  df-iord 4130  df-on 4132  df-suc 4135  df-iom 4341  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-iota 4894  df-fun 4931  df-fn 4932  df-f 4933  df-f1 4934  df-fo 4935  df-f1o 4936  df-fv 4937  df-ov 5542  df-oprab 5543  df-mpt2 5544  df-1st 5794  df-2nd 5795  df-recs 5950  df-irdg 5987  df-1o 6031  df-2o 6032  df-oadd 6035  df-omul 6036  df-er 6136  df-ec 6138  df-qs 6142  df-ni 6459  df-pli 6460  df-mi 6461  df-lti 6462  df-plpq 6499  df-mpq 6500  df-enq 6502  df-nqqs 6503  df-plqqs 6504  df-mqqs 6505  df-1nqqs 6506  df-rq 6507  df-ltnqqs 6508  df-enq0 6579  df-nq0 6580  df-0nq0 6581  df-plq0 6582  df-mq0 6583  df-inp 6621
This theorem is referenced by:  prmuloc2  6722  mullocpr  6726
  Copyright terms: Public domain W3C validator