ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prmuloclemcalc GIF version

Theorem prmuloclemcalc 6852
Description: Calculations for prmuloc 6853. (Contributed by Jim Kingdon, 9-Dec-2019.)
Hypotheses
Ref Expression
prmuloclemcalc.ru (𝜑𝑅 <Q 𝑈)
prmuloclemcalc.udp (𝜑𝑈 <Q (𝐷 +Q 𝑃))
prmuloclemcalc.axb (𝜑 → (𝐴 +Q 𝑋) = 𝐵)
prmuloclemcalc.pbrx (𝜑 → (𝑃 ·Q 𝐵) <Q (𝑅 ·Q 𝑋))
prmuloclemcalc.a (𝜑𝐴Q)
prmuloclemcalc.b (𝜑𝐵Q)
prmuloclemcalc.d (𝜑𝐷Q)
prmuloclemcalc.p (𝜑𝑃Q)
prmuloclemcalc.x (𝜑𝑋Q)
Assertion
Ref Expression
prmuloclemcalc (𝜑 → (𝑈 ·Q 𝐴) <Q (𝐷 ·Q 𝐵))

Proof of Theorem prmuloclemcalc
StepHypRef Expression
1 prmuloclemcalc.axb . . . . . . 7 (𝜑 → (𝐴 +Q 𝑋) = 𝐵)
21oveq2d 5579 . . . . . 6 (𝜑 → (𝑈 ·Q (𝐴 +Q 𝑋)) = (𝑈 ·Q 𝐵))
3 prmuloclemcalc.ru . . . . . . . . 9 (𝜑𝑅 <Q 𝑈)
4 ltrelnq 6652 . . . . . . . . . 10 <Q ⊆ (Q × Q)
54brel 4438 . . . . . . . . 9 (𝑅 <Q 𝑈 → (𝑅Q𝑈Q))
63, 5syl 14 . . . . . . . 8 (𝜑 → (𝑅Q𝑈Q))
76simprd 112 . . . . . . 7 (𝜑𝑈Q)
8 prmuloclemcalc.a . . . . . . 7 (𝜑𝐴Q)
9 prmuloclemcalc.x . . . . . . 7 (𝜑𝑋Q)
10 distrnqg 6674 . . . . . . 7 ((𝑈Q𝐴Q𝑋Q) → (𝑈 ·Q (𝐴 +Q 𝑋)) = ((𝑈 ·Q 𝐴) +Q (𝑈 ·Q 𝑋)))
117, 8, 9, 10syl3anc 1170 . . . . . 6 (𝜑 → (𝑈 ·Q (𝐴 +Q 𝑋)) = ((𝑈 ·Q 𝐴) +Q (𝑈 ·Q 𝑋)))
122, 11eqtr3d 2117 . . . . 5 (𝜑 → (𝑈 ·Q 𝐵) = ((𝑈 ·Q 𝐴) +Q (𝑈 ·Q 𝑋)))
13 prmuloclemcalc.b . . . . . . 7 (𝜑𝐵Q)
14 mulcomnqg 6670 . . . . . . 7 ((𝐵Q𝑈Q) → (𝐵 ·Q 𝑈) = (𝑈 ·Q 𝐵))
1513, 7, 14syl2anc 403 . . . . . 6 (𝜑 → (𝐵 ·Q 𝑈) = (𝑈 ·Q 𝐵))
16 prmuloclemcalc.udp . . . . . . . . . 10 (𝜑𝑈 <Q (𝐷 +Q 𝑃))
17 ltmnqi 6690 . . . . . . . . . 10 ((𝑈 <Q (𝐷 +Q 𝑃) ∧ 𝐵Q) → (𝐵 ·Q 𝑈) <Q (𝐵 ·Q (𝐷 +Q 𝑃)))
1816, 13, 17syl2anc 403 . . . . . . . . 9 (𝜑 → (𝐵 ·Q 𝑈) <Q (𝐵 ·Q (𝐷 +Q 𝑃)))
19 prmuloclemcalc.d . . . . . . . . . 10 (𝜑𝐷Q)
20 prmuloclemcalc.p . . . . . . . . . 10 (𝜑𝑃Q)
21 distrnqg 6674 . . . . . . . . . 10 ((𝐵Q𝐷Q𝑃Q) → (𝐵 ·Q (𝐷 +Q 𝑃)) = ((𝐵 ·Q 𝐷) +Q (𝐵 ·Q 𝑃)))
2213, 19, 20, 21syl3anc 1170 . . . . . . . . 9 (𝜑 → (𝐵 ·Q (𝐷 +Q 𝑃)) = ((𝐵 ·Q 𝐷) +Q (𝐵 ·Q 𝑃)))
2318, 22breqtrd 3829 . . . . . . . 8 (𝜑 → (𝐵 ·Q 𝑈) <Q ((𝐵 ·Q 𝐷) +Q (𝐵 ·Q 𝑃)))
24 mulcomnqg 6670 . . . . . . . . . . 11 ((𝑃Q𝐵Q) → (𝑃 ·Q 𝐵) = (𝐵 ·Q 𝑃))
2520, 13, 24syl2anc 403 . . . . . . . . . 10 (𝜑 → (𝑃 ·Q 𝐵) = (𝐵 ·Q 𝑃))
26 prmuloclemcalc.pbrx . . . . . . . . . 10 (𝜑 → (𝑃 ·Q 𝐵) <Q (𝑅 ·Q 𝑋))
2725, 26eqbrtrrd 3827 . . . . . . . . 9 (𝜑 → (𝐵 ·Q 𝑃) <Q (𝑅 ·Q 𝑋))
28 mulclnq 6663 . . . . . . . . . 10 ((𝐵Q𝐷Q) → (𝐵 ·Q 𝐷) ∈ Q)
2913, 19, 28syl2anc 403 . . . . . . . . 9 (𝜑 → (𝐵 ·Q 𝐷) ∈ Q)
30 ltanqi 6689 . . . . . . . . 9 (((𝐵 ·Q 𝑃) <Q (𝑅 ·Q 𝑋) ∧ (𝐵 ·Q 𝐷) ∈ Q) → ((𝐵 ·Q 𝐷) +Q (𝐵 ·Q 𝑃)) <Q ((𝐵 ·Q 𝐷) +Q (𝑅 ·Q 𝑋)))
3127, 29, 30syl2anc 403 . . . . . . . 8 (𝜑 → ((𝐵 ·Q 𝐷) +Q (𝐵 ·Q 𝑃)) <Q ((𝐵 ·Q 𝐷) +Q (𝑅 ·Q 𝑋)))
32 ltsonq 6685 . . . . . . . . 9 <Q Or Q
3332, 4sotri 4770 . . . . . . . 8 (((𝐵 ·Q 𝑈) <Q ((𝐵 ·Q 𝐷) +Q (𝐵 ·Q 𝑃)) ∧ ((𝐵 ·Q 𝐷) +Q (𝐵 ·Q 𝑃)) <Q ((𝐵 ·Q 𝐷) +Q (𝑅 ·Q 𝑋))) → (𝐵 ·Q 𝑈) <Q ((𝐵 ·Q 𝐷) +Q (𝑅 ·Q 𝑋)))
3423, 31, 33syl2anc 403 . . . . . . 7 (𝜑 → (𝐵 ·Q 𝑈) <Q ((𝐵 ·Q 𝐷) +Q (𝑅 ·Q 𝑋)))
35 ltmnqi 6690 . . . . . . . . . 10 ((𝑅 <Q 𝑈𝑋Q) → (𝑋 ·Q 𝑅) <Q (𝑋 ·Q 𝑈))
363, 9, 35syl2anc 403 . . . . . . . . 9 (𝜑 → (𝑋 ·Q 𝑅) <Q (𝑋 ·Q 𝑈))
376simpld 110 . . . . . . . . . 10 (𝜑𝑅Q)
38 mulcomnqg 6670 . . . . . . . . . 10 ((𝑋Q𝑅Q) → (𝑋 ·Q 𝑅) = (𝑅 ·Q 𝑋))
399, 37, 38syl2anc 403 . . . . . . . . 9 (𝜑 → (𝑋 ·Q 𝑅) = (𝑅 ·Q 𝑋))
40 mulcomnqg 6670 . . . . . . . . . 10 ((𝑋Q𝑈Q) → (𝑋 ·Q 𝑈) = (𝑈 ·Q 𝑋))
419, 7, 40syl2anc 403 . . . . . . . . 9 (𝜑 → (𝑋 ·Q 𝑈) = (𝑈 ·Q 𝑋))
4236, 39, 413brtr3d 3834 . . . . . . . 8 (𝜑 → (𝑅 ·Q 𝑋) <Q (𝑈 ·Q 𝑋))
43 ltanqi 6689 . . . . . . . 8 (((𝑅 ·Q 𝑋) <Q (𝑈 ·Q 𝑋) ∧ (𝐵 ·Q 𝐷) ∈ Q) → ((𝐵 ·Q 𝐷) +Q (𝑅 ·Q 𝑋)) <Q ((𝐵 ·Q 𝐷) +Q (𝑈 ·Q 𝑋)))
4442, 29, 43syl2anc 403 . . . . . . 7 (𝜑 → ((𝐵 ·Q 𝐷) +Q (𝑅 ·Q 𝑋)) <Q ((𝐵 ·Q 𝐷) +Q (𝑈 ·Q 𝑋)))
4532, 4sotri 4770 . . . . . . 7 (((𝐵 ·Q 𝑈) <Q ((𝐵 ·Q 𝐷) +Q (𝑅 ·Q 𝑋)) ∧ ((𝐵 ·Q 𝐷) +Q (𝑅 ·Q 𝑋)) <Q ((𝐵 ·Q 𝐷) +Q (𝑈 ·Q 𝑋))) → (𝐵 ·Q 𝑈) <Q ((𝐵 ·Q 𝐷) +Q (𝑈 ·Q 𝑋)))
4634, 44, 45syl2anc 403 . . . . . 6 (𝜑 → (𝐵 ·Q 𝑈) <Q ((𝐵 ·Q 𝐷) +Q (𝑈 ·Q 𝑋)))
4715, 46eqbrtrrd 3827 . . . . 5 (𝜑 → (𝑈 ·Q 𝐵) <Q ((𝐵 ·Q 𝐷) +Q (𝑈 ·Q 𝑋)))
4812, 47eqbrtrrd 3827 . . . 4 (𝜑 → ((𝑈 ·Q 𝐴) +Q (𝑈 ·Q 𝑋)) <Q ((𝐵 ·Q 𝐷) +Q (𝑈 ·Q 𝑋)))
49 mulclnq 6663 . . . . . 6 ((𝑈Q𝐴Q) → (𝑈 ·Q 𝐴) ∈ Q)
507, 8, 49syl2anc 403 . . . . 5 (𝜑 → (𝑈 ·Q 𝐴) ∈ Q)
51 mulclnq 6663 . . . . . 6 ((𝑈Q𝑋Q) → (𝑈 ·Q 𝑋) ∈ Q)
527, 9, 51syl2anc 403 . . . . 5 (𝜑 → (𝑈 ·Q 𝑋) ∈ Q)
53 addcomnqg 6668 . . . . 5 (((𝑈 ·Q 𝐴) ∈ Q ∧ (𝑈 ·Q 𝑋) ∈ Q) → ((𝑈 ·Q 𝐴) +Q (𝑈 ·Q 𝑋)) = ((𝑈 ·Q 𝑋) +Q (𝑈 ·Q 𝐴)))
5450, 52, 53syl2anc 403 . . . 4 (𝜑 → ((𝑈 ·Q 𝐴) +Q (𝑈 ·Q 𝑋)) = ((𝑈 ·Q 𝑋) +Q (𝑈 ·Q 𝐴)))
55 addcomnqg 6668 . . . . 5 (((𝐵 ·Q 𝐷) ∈ Q ∧ (𝑈 ·Q 𝑋) ∈ Q) → ((𝐵 ·Q 𝐷) +Q (𝑈 ·Q 𝑋)) = ((𝑈 ·Q 𝑋) +Q (𝐵 ·Q 𝐷)))
5629, 52, 55syl2anc 403 . . . 4 (𝜑 → ((𝐵 ·Q 𝐷) +Q (𝑈 ·Q 𝑋)) = ((𝑈 ·Q 𝑋) +Q (𝐵 ·Q 𝐷)))
5748, 54, 563brtr3d 3834 . . 3 (𝜑 → ((𝑈 ·Q 𝑋) +Q (𝑈 ·Q 𝐴)) <Q ((𝑈 ·Q 𝑋) +Q (𝐵 ·Q 𝐷)))
58 ltanqg 6687 . . . 4 (((𝑈 ·Q 𝐴) ∈ Q ∧ (𝐵 ·Q 𝐷) ∈ Q ∧ (𝑈 ·Q 𝑋) ∈ Q) → ((𝑈 ·Q 𝐴) <Q (𝐵 ·Q 𝐷) ↔ ((𝑈 ·Q 𝑋) +Q (𝑈 ·Q 𝐴)) <Q ((𝑈 ·Q 𝑋) +Q (𝐵 ·Q 𝐷))))
5950, 29, 52, 58syl3anc 1170 . . 3 (𝜑 → ((𝑈 ·Q 𝐴) <Q (𝐵 ·Q 𝐷) ↔ ((𝑈 ·Q 𝑋) +Q (𝑈 ·Q 𝐴)) <Q ((𝑈 ·Q 𝑋) +Q (𝐵 ·Q 𝐷))))
6057, 59mpbird 165 . 2 (𝜑 → (𝑈 ·Q 𝐴) <Q (𝐵 ·Q 𝐷))
61 mulcomnqg 6670 . . 3 ((𝐵Q𝐷Q) → (𝐵 ·Q 𝐷) = (𝐷 ·Q 𝐵))
6213, 19, 61syl2anc 403 . 2 (𝜑 → (𝐵 ·Q 𝐷) = (𝐷 ·Q 𝐵))
6360, 62breqtrd 3829 1 (𝜑 → (𝑈 ·Q 𝐴) <Q (𝐷 ·Q 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103   = wceq 1285  wcel 1434   class class class wbr 3805  (class class class)co 5563  Qcnq 6567   +Q cplq 6569   ·Q cmq 6570   <Q cltq 6572
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2611  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-eprel 4072  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-irdg 6039  df-oadd 6089  df-omul 6090  df-er 6193  df-ec 6195  df-qs 6199  df-ni 6591  df-pli 6592  df-mi 6593  df-lti 6594  df-plpq 6631  df-mpq 6632  df-enq 6634  df-nqqs 6635  df-plqqs 6636  df-mqqs 6637  df-ltnqqs 6640
This theorem is referenced by:  prmuloc  6853
  Copyright terms: Public domain W3C validator