ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prodge0 GIF version

Theorem prodge0 8076
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005.) (Revised by Mario Carneiro, 27-May-2016.)
Assertion
Ref Expression
prodge0 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐵)

Proof of Theorem prodge0
StepHypRef Expression
1 simpll 496 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐴 ∈ ℝ)
2 simplr 497 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐵 ∈ ℝ)
32renegcld 7628 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → -𝐵 ∈ ℝ)
4 simprl 498 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < 𝐴)
5 simprr 499 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < -𝐵)
61, 3, 4, 5mulgt0d 7376 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < (𝐴 · -𝐵))
71recnd 7286 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐴 ∈ ℂ)
82recnd 7286 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 𝐵 ∈ ℂ)
97, 8mulneg2d 7660 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → (𝐴 · -𝐵) = -(𝐴 · 𝐵))
106, 9breqtrd 3830 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 < -𝐵)) → 0 < -(𝐴 · 𝐵))
1110expr 367 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 < -𝐵 → 0 < -(𝐴 · 𝐵)))
12 simplr 497 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → 𝐵 ∈ ℝ)
1312lt0neg1d 7760 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (𝐵 < 0 ↔ 0 < -𝐵))
14 simpll 496 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → 𝐴 ∈ ℝ)
1514, 12remulcld 7288 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (𝐴 · 𝐵) ∈ ℝ)
1615lt0neg1d 7760 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → ((𝐴 · 𝐵) < 0 ↔ 0 < -(𝐴 · 𝐵)))
1711, 13, 163imtr4d 201 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (𝐵 < 0 → (𝐴 · 𝐵) < 0))
1817con3d 594 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (¬ (𝐴 · 𝐵) < 0 → ¬ 𝐵 < 0))
19 0red 7259 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → 0 ∈ ℝ)
2019, 15lenltd 7371 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 ≤ (𝐴 · 𝐵) ↔ ¬ (𝐴 · 𝐵) < 0))
2119, 12lenltd 7371 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 ≤ 𝐵 ↔ ¬ 𝐵 < 0))
2218, 20, 213imtr4d 201 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 < 𝐴) → (0 ≤ (𝐴 · 𝐵) → 0 ≤ 𝐵))
2322impr 371 1 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 < 𝐴 ∧ 0 ≤ (𝐴 · 𝐵))) → 0 ≤ 𝐵)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wcel 1434   class class class wbr 3806  (class class class)co 5565  cr 7119  0cc0 7120   · cmul 7125   < clt 7292  cle 7293  -cneg 7424
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-cnex 7206  ax-resscn 7207  ax-1cn 7208  ax-1re 7209  ax-icn 7210  ax-addcl 7211  ax-addrcl 7212  ax-mulcl 7213  ax-mulrcl 7214  ax-addcom 7215  ax-mulcom 7216  ax-addass 7217  ax-distr 7219  ax-i2m1 7220  ax-0id 7223  ax-rnegex 7224  ax-cnre 7226  ax-pre-ltadd 7231  ax-pre-mulgt0 7232
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2613  df-sbc 2826  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-br 3807  df-opab 3861  df-id 4077  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-iota 4918  df-fun 4955  df-fv 4961  df-riota 5521  df-ov 5568  df-oprab 5569  df-mpt2 5570  df-pnf 7294  df-mnf 7295  df-xr 7296  df-ltxr 7297  df-le 7298  df-sub 7425  df-neg 7426
This theorem is referenced by:  prodge02  8077  prodge0i  8131  oexpneg  10509  evennn02n  10514
  Copyright terms: Public domain W3C validator