ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  prth Structured version   GIF version

Theorem prth 323
Description: Theorem *3.47 of [WhiteheadRussell] p. 113. It was proved by Leibniz, and it evidently pleased him enough to call it 'praeclarum theorema' (splendid theorem). (Contributed by NM, 12-Aug-1993.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
Assertion
Ref Expression
prth (((φψ) (χθ)) → ((φ χ) → (ψ θ)))

Proof of Theorem prth
StepHypRef Expression
1 simpl 100 . 2 (((φψ) (χθ)) → (φψ))
2 simpr 101 . 2 (((φψ) (χθ)) → (χθ))
31, 2anim12d 316 1 (((φψ) (χθ)) → ((φ χ) → (ψ θ)))
Colors of variables: wff set class
Syntax hints:  wi 4   wa 95
This theorem is referenced by:  nfand  1407  equsexd  1556  mo23  1872  euind  2608  reuind  2624  reuss2  3102
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 97  ax-ia2 98  ax-ia3 99
This theorem depends on definitions:  df-bi 108
  Copyright terms: Public domain W3C validator