ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pw2dvdseu GIF version

Theorem pw2dvdseu 11846
Description: A natural number has a unique highest power of two which divides it. (Contributed by Jim Kingdon, 16-Nov-2021.)
Assertion
Ref Expression
pw2dvdseu (𝑁 ∈ ℕ → ∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Distinct variable group:   𝑚,𝑁

Proof of Theorem pw2dvdseu
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pw2dvds 11844 . 2 (𝑁 ∈ ℕ → ∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
2 simpll 518 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑁 ∈ ℕ)
3 simplrl 524 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ∈ ℕ0)
4 simplrr 525 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ∈ ℕ0)
5 simprll 526 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (2↑𝑚) ∥ 𝑁)
6 simprrr 529 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → ¬ (2↑(𝑥 + 1)) ∥ 𝑁)
72, 3, 4, 5, 6pw2dvdseulemle 11845 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚𝑥)
8 simprrl 528 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (2↑𝑥) ∥ 𝑁)
9 simprlr 527 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → ¬ (2↑(𝑚 + 1)) ∥ 𝑁)
102, 4, 3, 8, 9pw2dvdseulemle 11845 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥𝑚)
113nn0red 9031 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 ∈ ℝ)
124nn0red 9031 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑥 ∈ ℝ)
1311, 12letri3d 7879 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → (𝑚 = 𝑥 ↔ (𝑚𝑥𝑥𝑚)))
147, 10, 13mpbir2and 928 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) ∧ (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))) → 𝑚 = 𝑥)
1514ex 114 . . . 4 ((𝑁 ∈ ℕ ∧ (𝑚 ∈ ℕ0𝑥 ∈ ℕ0)) → ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥))
1615ralrimivva 2514 . . 3 (𝑁 ∈ ℕ → ∀𝑚 ∈ ℕ0𝑥 ∈ ℕ0 ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥))
17 oveq2 5782 . . . . . 6 (𝑚 = 𝑥 → (2↑𝑚) = (2↑𝑥))
1817breq1d 3939 . . . . 5 (𝑚 = 𝑥 → ((2↑𝑚) ∥ 𝑁 ↔ (2↑𝑥) ∥ 𝑁))
19 oveq1 5781 . . . . . . . 8 (𝑚 = 𝑥 → (𝑚 + 1) = (𝑥 + 1))
2019oveq2d 5790 . . . . . . 7 (𝑚 = 𝑥 → (2↑(𝑚 + 1)) = (2↑(𝑥 + 1)))
2120breq1d 3939 . . . . . 6 (𝑚 = 𝑥 → ((2↑(𝑚 + 1)) ∥ 𝑁 ↔ (2↑(𝑥 + 1)) ∥ 𝑁))
2221notbid 656 . . . . 5 (𝑚 = 𝑥 → (¬ (2↑(𝑚 + 1)) ∥ 𝑁 ↔ ¬ (2↑(𝑥 + 1)) ∥ 𝑁))
2318, 22anbi12d 464 . . . 4 (𝑚 = 𝑥 → (((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)))
2423rmo4 2877 . . 3 (∃*𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ ∀𝑚 ∈ ℕ0𝑥 ∈ ℕ0 ((((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ((2↑𝑥) ∥ 𝑁 ∧ ¬ (2↑(𝑥 + 1)) ∥ 𝑁)) → 𝑚 = 𝑥))
2516, 24sylibr 133 . 2 (𝑁 ∈ ℕ → ∃*𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
26 reu5 2643 . 2 (∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ↔ (∃𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁) ∧ ∃*𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁)))
271, 25, 26sylanbrc 413 1 (𝑁 ∈ ℕ → ∃!𝑚 ∈ ℕ0 ((2↑𝑚) ∥ 𝑁 ∧ ¬ (2↑(𝑚 + 1)) ∥ 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wcel 1480  wral 2416  wrex 2417  ∃!wreu 2418  ∃*wrmo 2419   class class class wbr 3929  (class class class)co 5774  1c1 7621   + caddc 7623  cle 7801  cn 8720  2c2 8771  0cn0 8977  cexp 10292  cdvds 11493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-dvds 11494
This theorem is referenced by:  oddpwdclemxy  11847  oddpwdclemdvds  11848  oddpwdclemndvds  11849  oddpwdclemodd  11850  oddpwdclemdc  11851  oddpwdc  11852
  Copyright terms: Public domain W3C validator