ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwel GIF version

Theorem pwel 3981
Description: Membership of a power class. Exercise 10 of [Enderton] p. 26. (Contributed by NM, 13-Jan-2007.)
Assertion
Ref Expression
pwel (𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)

Proof of Theorem pwel
StepHypRef Expression
1 elssuni 3635 . . 3 (𝐴𝐵𝐴 𝐵)
2 sspwb 3979 . . 3 (𝐴 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵)
31, 2sylib 131 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
4 pwexg 3960 . . 3 (𝐴𝐵 → 𝒫 𝐴 ∈ V)
5 elpwg 3394 . . 3 (𝒫 𝐴 ∈ V → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵))
64, 5syl 14 . 2 (𝐴𝐵 → (𝒫 𝐴 ∈ 𝒫 𝒫 𝐵 ↔ 𝒫 𝐴 ⊆ 𝒫 𝐵))
73, 6mpbird 160 1 (𝐴𝐵 → 𝒫 𝐴 ∈ 𝒫 𝒫 𝐵)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102  wcel 1409  Vcvv 2574  wss 2944  𝒫 cpw 3386   cuni 3607
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-uni 3608
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator