Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwidg GIF version

Theorem pwidg 3400
 Description: Membership of the original in a power set. (Contributed by Stefan O'Rear, 1-Feb-2015.)
Assertion
Ref Expression
pwidg (𝐴𝑉𝐴 ∈ 𝒫 𝐴)

Proof of Theorem pwidg
StepHypRef Expression
1 ssid 2992 . 2 𝐴𝐴
2 elpwg 3395 . 2 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐴𝐴𝐴))
31, 2mpbiri 161 1 (𝐴𝑉𝐴 ∈ 𝒫 𝐴)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∈ wcel 1409   ⊆ wss 2945  𝒫 cpw 3387 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038 This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-in 2952  df-ss 2959  df-pw 3389 This theorem is referenced by:  pwid  3401  axpweq  3952
 Copyright terms: Public domain W3C validator