ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwprss GIF version

Theorem pwprss 3603
Description: The power set of an unordered pair. (Contributed by Jim Kingdon, 13-Aug-2018.)
Assertion
Ref Expression
pwprss ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ⊆ 𝒫 {𝐴, 𝐵}

Proof of Theorem pwprss
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 2577 . . . . . 6 𝑥 ∈ V
21elpr 3423 . . . . 5 (𝑥 ∈ {∅, {𝐴}} ↔ (𝑥 = ∅ ∨ 𝑥 = {𝐴}))
31elpr 3423 . . . . 5 (𝑥 ∈ {{𝐵}, {𝐴, 𝐵}} ↔ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵}))
42, 3orbi12i 691 . . . 4 ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) ↔ ((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})))
5 ssprr 3554 . . . 4 (((𝑥 = ∅ ∨ 𝑥 = {𝐴}) ∨ (𝑥 = {𝐵} ∨ 𝑥 = {𝐴, 𝐵})) → 𝑥 ⊆ {𝐴, 𝐵})
64, 5sylbi 118 . . 3 ((𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}) → 𝑥 ⊆ {𝐴, 𝐵})
7 elun 3111 . . 3 (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ↔ (𝑥 ∈ {∅, {𝐴}} ∨ 𝑥 ∈ {{𝐵}, {𝐴, 𝐵}}))
81elpw 3392 . . 3 (𝑥 ∈ 𝒫 {𝐴, 𝐵} ↔ 𝑥 ⊆ {𝐴, 𝐵})
96, 7, 83imtr4i 194 . 2 (𝑥 ∈ ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) → 𝑥 ∈ 𝒫 {𝐴, 𝐵})
109ssriv 2976 1 ({∅, {𝐴}} ∪ {{𝐵}, {𝐴, 𝐵}}) ⊆ 𝒫 {𝐴, 𝐵}
Colors of variables: wff set class
Syntax hints:  wo 639   = wceq 1259  wcel 1409  cun 2942  wss 2944  c0 3251  𝒫 cpw 3386  {csn 3402  {cpr 3403
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-v 2576  df-dif 2947  df-un 2949  df-in 2951  df-ss 2958  df-nul 3252  df-pw 3388  df-sn 3408  df-pr 3409
This theorem is referenced by:  pwpwpw0ss  3605  ord3ex  3968
  Copyright terms: Public domain W3C validator