![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwv | GIF version |
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
pwv | ⊢ 𝒫 V = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3020 | . . . 4 ⊢ 𝑥 ⊆ V | |
2 | vex 2605 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | elpw 3396 | . . . 4 ⊢ (𝑥 ∈ 𝒫 V ↔ 𝑥 ⊆ V) |
4 | 1, 3 | mpbir 144 | . . 3 ⊢ 𝑥 ∈ 𝒫 V |
5 | 4, 2 | 2th 172 | . 2 ⊢ (𝑥 ∈ 𝒫 V ↔ 𝑥 ∈ V) |
6 | 5 | eqriv 2079 | 1 ⊢ 𝒫 V = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1285 ∈ wcel 1434 Vcvv 2602 ⊆ wss 2974 𝒫 cpw 3390 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-v 2604 df-in 2980 df-ss 2987 df-pw 3392 |
This theorem is referenced by: univ 4233 |
Copyright terms: Public domain | W3C validator |