ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qbtwnre GIF version

Theorem qbtwnre 9395
Description: The rational numbers are dense in : any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.)
Assertion
Ref Expression
qbtwnre ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem qbtwnre
Dummy variables 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 940 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐵 ∈ ℝ)
2 simp1 939 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 ∈ ℝ)
31, 2resubcld 7604 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐵𝐴) ∈ ℝ)
4 simp3 941 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 𝐴 < 𝐵)
52, 1posdifd 7751 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → (𝐴 < 𝐵 ↔ 0 < (𝐵𝐴)))
64, 5mpbid 145 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → 0 < (𝐵𝐴))
7 nnrecl 8405 . . 3 (((𝐵𝐴) ∈ ℝ ∧ 0 < (𝐵𝐴)) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝐵𝐴))
83, 6, 7syl2anc 403 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑛 ∈ ℕ (1 / 𝑛) < (𝐵𝐴))
92adantr 270 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝐴 ∈ ℝ)
10 2re 8228 . . . . . . 7 2 ∈ ℝ
1110a1i 9 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 2 ∈ ℝ)
12 simprl 498 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝑛 ∈ ℕ)
1312nnred 8171 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → 𝑛 ∈ ℝ)
1411, 13remulcld 7263 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → (2 · 𝑛) ∈ ℝ)
159, 14remulcld 7263 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → (𝐴 · (2 · 𝑛)) ∈ ℝ)
16 rebtwn2z 9393 . . . 4 ((𝐴 · (2 · 𝑛)) ∈ ℝ → ∃𝑚 ∈ ℤ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))
1715, 16syl 14 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → ∃𝑚 ∈ ℤ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))
18 simprl 498 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑚 ∈ ℤ)
19 2z 8512 . . . . . . 7 2 ∈ ℤ
2019a1i 9 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 2 ∈ ℤ)
2118, 20zaddcld 8606 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝑚 + 2) ∈ ℤ)
22 2nn 8312 . . . . . . 7 2 ∈ ℕ
2322a1i 9 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 2 ∈ ℕ)
2412adantr 270 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑛 ∈ ℕ)
2523, 24nnmulcld 8206 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (2 · 𝑛) ∈ ℕ)
26 znq 8842 . . . . 5 (((𝑚 + 2) ∈ ℤ ∧ (2 · 𝑛) ∈ ℕ) → ((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ)
2721, 25, 26syl2anc 403 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ)
28 simprrr 507 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝐴 · (2 · 𝑛)) < (𝑚 + 2))
299adantr 270 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐴 ∈ ℝ)
3021zred 8602 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (𝑚 + 2) ∈ ℝ)
3125nnrpd 8905 . . . . . 6 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (2 · 𝑛) ∈ ℝ+)
3229, 30, 31ltmuldivd 8954 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝐴 · (2 · 𝑛)) < (𝑚 + 2) ↔ 𝐴 < ((𝑚 + 2) / (2 · 𝑛))))
3328, 32mpbid 145 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐴 < ((𝑚 + 2) / (2 · 𝑛)))
34 simpll2 979 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝐵 ∈ ℝ)
35 simprrl 506 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → 𝑚 < (𝐴 · (2 · 𝑛)))
36 simplrr 503 . . . . 5 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → (1 / 𝑛) < (𝐵𝐴))
3718, 24, 29, 34, 35, 36qbtwnrelemcalc 9394 . . . 4 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)
38 breq2 3809 . . . . . 6 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → (𝐴 < 𝑥𝐴 < ((𝑚 + 2) / (2 · 𝑛))))
39 breq1 3808 . . . . . 6 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → (𝑥 < 𝐵 ↔ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵))
4038, 39anbi12d 457 . . . . 5 (𝑥 = ((𝑚 + 2) / (2 · 𝑛)) → ((𝐴 < 𝑥𝑥 < 𝐵) ↔ (𝐴 < ((𝑚 + 2) / (2 · 𝑛)) ∧ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)))
4140rspcev 2710 . . . 4 ((((𝑚 + 2) / (2 · 𝑛)) ∈ ℚ ∧ (𝐴 < ((𝑚 + 2) / (2 · 𝑛)) ∧ ((𝑚 + 2) / (2 · 𝑛)) < 𝐵)) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
4227, 33, 37, 41syl12anc 1168 . . 3 ((((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) ∧ (𝑚 ∈ ℤ ∧ (𝑚 < (𝐴 · (2 · 𝑛)) ∧ (𝐴 · (2 · 𝑛)) < (𝑚 + 2)))) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
4317, 42rexlimddv 2486 . 2 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) ∧ (𝑛 ∈ ℕ ∧ (1 / 𝑛) < (𝐵𝐴))) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
448, 43rexlimddv 2486 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵) → ∃𝑥 ∈ ℚ (𝐴 < 𝑥𝑥 < 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  w3a 920   = wceq 1285  wcel 1434  wrex 2354   class class class wbr 3805  (class class class)co 5563  cr 7094  0cc0 7095  1c1 7096   + caddc 7098   · cmul 7100   < clt 7267  cmin 7398   / cdiv 7879  cn 8158  2c2 8208  cz 8484  cq 8837
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-n0 8408  df-z 8485  df-uz 8753  df-q 8838  df-rp 8868
This theorem is referenced by:  qbtwnxr  9396  qdenre  10289
  Copyright terms: Public domain W3C validator