ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qdassr GIF version

Theorem qdassr 3492
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdassr ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷})

Proof of Theorem qdassr
StepHypRef Expression
1 unass 3130 . 2 (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷}))
2 df-pr 3407 . . 3 {𝐴, 𝐵} = ({𝐴} ∪ {𝐵})
32uneq1i 3123 . 2 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = (({𝐴} ∪ {𝐵}) ∪ {𝐶, 𝐷})
4 tpass 3490 . . 3 {𝐵, 𝐶, 𝐷} = ({𝐵} ∪ {𝐶, 𝐷})
54uneq2i 3124 . 2 ({𝐴} ∪ {𝐵, 𝐶, 𝐷}) = ({𝐴} ∪ ({𝐵} ∪ {𝐶, 𝐷}))
61, 3, 53eqtr4i 2112 1 ({𝐴, 𝐵} ∪ {𝐶, 𝐷}) = ({𝐴} ∪ {𝐵, 𝐶, 𝐷})
Colors of variables: wff set class
Syntax hints:   = wceq 1285  cun 2972  {csn 3400  {cpr 3401  {ctp 3402
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3or 921  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-v 2604  df-un 2978  df-sn 3406  df-pr 3407  df-tp 3408
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator