![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > qexpclz | GIF version |
Description: Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014.) |
Ref | Expression |
---|---|
qexpclz | ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0z 8495 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
2 | zq 8844 | . . . . . . 7 ⊢ (0 ∈ ℤ → 0 ∈ ℚ) | |
3 | 1, 2 | ax-mp 7 | . . . . . 6 ⊢ 0 ∈ ℚ |
4 | qapne 8857 | . . . . . 6 ⊢ ((𝐴 ∈ ℚ ∧ 0 ∈ ℚ) → (𝐴 # 0 ↔ 𝐴 ≠ 0)) | |
5 | 3, 4 | mpan2 416 | . . . . 5 ⊢ (𝐴 ∈ ℚ → (𝐴 # 0 ↔ 𝐴 ≠ 0)) |
6 | 5 | 3anbi2d 1249 | . . . 4 ⊢ (𝐴 ∈ ℚ → ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) ↔ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ))) |
7 | 6 | 3ad2ant1 960 | . . 3 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) ↔ (𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ))) |
8 | 7 | ibir 175 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ)) |
9 | qsscn 8849 | . . 3 ⊢ ℚ ⊆ ℂ | |
10 | qmulcl 8855 | . . 3 ⊢ ((𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ) → (𝑥 · 𝑦) ∈ ℚ) | |
11 | 1z 8510 | . . . 4 ⊢ 1 ∈ ℤ | |
12 | zq 8844 | . . . 4 ⊢ (1 ∈ ℤ → 1 ∈ ℚ) | |
13 | 11, 12 | ax-mp 7 | . . 3 ⊢ 1 ∈ ℚ |
14 | qapne 8857 | . . . . . 6 ⊢ ((𝑥 ∈ ℚ ∧ 0 ∈ ℚ) → (𝑥 # 0 ↔ 𝑥 ≠ 0)) | |
15 | 3, 14 | mpan2 416 | . . . . 5 ⊢ (𝑥 ∈ ℚ → (𝑥 # 0 ↔ 𝑥 ≠ 0)) |
16 | 15 | pm5.32i 442 | . . . 4 ⊢ ((𝑥 ∈ ℚ ∧ 𝑥 # 0) ↔ (𝑥 ∈ ℚ ∧ 𝑥 ≠ 0)) |
17 | qreccl 8860 | . . . 4 ⊢ ((𝑥 ∈ ℚ ∧ 𝑥 ≠ 0) → (1 / 𝑥) ∈ ℚ) | |
18 | 16, 17 | sylbi 119 | . . 3 ⊢ ((𝑥 ∈ ℚ ∧ 𝑥 # 0) → (1 / 𝑥) ∈ ℚ) |
19 | 9, 10, 13, 18 | expcl2lemap 9637 | . 2 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 # 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) |
20 | 8, 19 | syl 14 | 1 ⊢ ((𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑𝑁) ∈ ℚ) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∧ w3a 920 ∈ wcel 1434 ≠ wne 2249 class class class wbr 3805 (class class class)co 5563 0cc0 7095 1c1 7096 # cap 7800 / cdiv 7879 ℤcz 8484 ℚcq 8837 ↑cexp 9624 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-nul 3924 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 ax-iinf 4357 ax-cnex 7181 ax-resscn 7182 ax-1cn 7183 ax-1re 7184 ax-icn 7185 ax-addcl 7186 ax-addrcl 7187 ax-mulcl 7188 ax-mulrcl 7189 ax-addcom 7190 ax-mulcom 7191 ax-addass 7192 ax-mulass 7193 ax-distr 7194 ax-i2m1 7195 ax-0lt1 7196 ax-1rid 7197 ax-0id 7198 ax-rnegex 7199 ax-precex 7200 ax-cnre 7201 ax-pre-ltirr 7202 ax-pre-ltwlin 7203 ax-pre-lttrn 7204 ax-pre-apti 7205 ax-pre-ltadd 7206 ax-pre-mulgt0 7207 ax-pre-mulext 7208 |
This theorem depends on definitions: df-bi 115 df-dc 777 df-3or 921 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-nel 2345 df-ral 2358 df-rex 2359 df-reu 2360 df-rmo 2361 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-if 3369 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-int 3657 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-id 4076 df-po 4079 df-iso 4080 df-iord 4149 df-on 4151 df-ilim 4152 df-suc 4154 df-iom 4360 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-riota 5519 df-ov 5566 df-oprab 5567 df-mpt2 5568 df-1st 5818 df-2nd 5819 df-recs 5974 df-frec 6060 df-pnf 7269 df-mnf 7270 df-xr 7271 df-ltxr 7272 df-le 7273 df-sub 7400 df-neg 7401 df-reap 7794 df-ap 7801 df-div 7880 df-inn 8159 df-n0 8408 df-z 8485 df-uz 8753 df-q 8838 df-iseq 9574 df-iexp 9625 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |