ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftf GIF version

Theorem qliftf 6514
Description: The domain and range of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
Assertion
Ref Expression
qliftf (𝜑 → (Fun 𝐹𝐹:(𝑋 / 𝑅)⟶𝑌))
Distinct variable groups:   𝜑,𝑥   𝑥,𝑅   𝑥,𝑋   𝑥,𝑌
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftf
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
3 qlift.3 . . . 4 (𝜑𝑅 Er 𝑋)
4 qlift.4 . . . 4 (𝜑𝑋 ∈ V)
51, 2, 3, 4qliftlem 6507 . . 3 ((𝜑𝑥𝑋) → [𝑥]𝑅 ∈ (𝑋 / 𝑅))
61, 5, 2fliftf 5700 . 2 (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋 ↦ [𝑥]𝑅)⟶𝑌))
7 df-qs 6435 . . . . 5 (𝑋 / 𝑅) = {𝑦 ∣ ∃𝑥𝑋 𝑦 = [𝑥]𝑅}
8 eqid 2139 . . . . . 6 (𝑥𝑋 ↦ [𝑥]𝑅) = (𝑥𝑋 ↦ [𝑥]𝑅)
98rnmpt 4787 . . . . 5 ran (𝑥𝑋 ↦ [𝑥]𝑅) = {𝑦 ∣ ∃𝑥𝑋 𝑦 = [𝑥]𝑅}
107, 9eqtr4i 2163 . . . 4 (𝑋 / 𝑅) = ran (𝑥𝑋 ↦ [𝑥]𝑅)
1110a1i 9 . . 3 (𝜑 → (𝑋 / 𝑅) = ran (𝑥𝑋 ↦ [𝑥]𝑅))
1211feq2d 5260 . 2 (𝜑 → (𝐹:(𝑋 / 𝑅)⟶𝑌𝐹:ran (𝑥𝑋 ↦ [𝑥]𝑅)⟶𝑌))
136, 12bitr4d 190 1 (𝜑 → (Fun 𝐹𝐹:(𝑋 / 𝑅)⟶𝑌))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104   = wceq 1331  wcel 1480  {cab 2125  wrex 2417  Vcvv 2686  cop 3530  cmpt 3989  ran crn 4540  Fun wfun 5117  wf 5119   Er wer 6426  [cec 6427   / cqs 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-rab 2425  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-er 6429  df-ec 6431  df-qs 6435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator