ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qliftfuns GIF version

Theorem qliftfuns 6506
Description: The function 𝐹 is the unique function defined by 𝐹‘[𝑥] = 𝐴, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
Hypotheses
Ref Expression
qlift.1 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
qlift.2 ((𝜑𝑥𝑋) → 𝐴𝑌)
qlift.3 (𝜑𝑅 Er 𝑋)
qlift.4 (𝜑𝑋 ∈ V)
Assertion
Ref Expression
qliftfuns (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑧(𝑦𝑅𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)))
Distinct variable groups:   𝑦,𝑧,𝐴   𝑥,𝑦,𝑧,𝜑   𝑥,𝑅,𝑦,𝑧   𝑦,𝐹,𝑧   𝑥,𝑋,𝑦,𝑧   𝑥,𝑌,𝑦,𝑧
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)

Proof of Theorem qliftfuns
StepHypRef Expression
1 qlift.1 . . 3 𝐹 = ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩)
2 nfcv 2279 . . . . 5 𝑦⟨[𝑥]𝑅, 𝐴
3 nfcv 2279 . . . . . 6 𝑥[𝑦]𝑅
4 nfcsb1v 3030 . . . . . 6 𝑥𝑦 / 𝑥𝐴
53, 4nfop 3716 . . . . 5 𝑥⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴
6 eceq1 6457 . . . . . 6 (𝑥 = 𝑦 → [𝑥]𝑅 = [𝑦]𝑅)
7 csbeq1a 3007 . . . . . 6 (𝑥 = 𝑦𝐴 = 𝑦 / 𝑥𝐴)
86, 7opeq12d 3708 . . . . 5 (𝑥 = 𝑦 → ⟨[𝑥]𝑅, 𝐴⟩ = ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
92, 5, 8cbvmpt 4018 . . . 4 (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
109rneqi 4762 . . 3 ran (𝑥𝑋 ↦ ⟨[𝑥]𝑅, 𝐴⟩) = ran (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
111, 10eqtri 2158 . 2 𝐹 = ran (𝑦𝑋 ↦ ⟨[𝑦]𝑅, 𝑦 / 𝑥𝐴⟩)
12 qlift.2 . . . 4 ((𝜑𝑥𝑋) → 𝐴𝑌)
1312ralrimiva 2503 . . 3 (𝜑 → ∀𝑥𝑋 𝐴𝑌)
144nfel1 2290 . . . 4 𝑥𝑦 / 𝑥𝐴𝑌
157eleq1d 2206 . . . 4 (𝑥 = 𝑦 → (𝐴𝑌𝑦 / 𝑥𝐴𝑌))
1614, 15rspc 2778 . . 3 (𝑦𝑋 → (∀𝑥𝑋 𝐴𝑌𝑦 / 𝑥𝐴𝑌))
1713, 16mpan9 279 . 2 ((𝜑𝑦𝑋) → 𝑦 / 𝑥𝐴𝑌)
18 qlift.3 . 2 (𝜑𝑅 Er 𝑋)
19 qlift.4 . 2 (𝜑𝑋 ∈ V)
20 csbeq1 3001 . 2 (𝑦 = 𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)
2111, 17, 18, 19, 20qliftfun 6504 1 (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑧(𝑦𝑅𝑧𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  wal 1329   = wceq 1331  wcel 1480  wral 2414  Vcvv 2681  csb 2998  cop 3525   class class class wbr 3924  cmpt 3984  ran crn 4535  Fun wfun 5112   Er wer 6419  [cec 6420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-er 6422  df-ec 6424  df-qs 6428
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator