ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qredeu GIF version

Theorem qredeu 10686
Description: Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeu (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
Distinct variable group:   𝑥,𝐴

Proof of Theorem qredeu
Dummy variables 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 8503 . . . . . . . . . 10 (𝑛 ∈ ℕ → 𝑛 ∈ ℤ)
2 gcddvds 10562 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ∧ (𝑧 gcd 𝑛) ∥ 𝑛))
32simpld 110 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∥ 𝑧)
41, 3sylan2 280 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∥ 𝑧)
5 gcdcl 10565 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∈ ℕ0)
61, 5sylan2 280 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℕ0)
76nn0zd 8600 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℤ)
8 simpl 107 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℤ)
91adantl 271 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℤ)
10 nnne0 8186 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕ → 𝑛 ≠ 0)
1110neneqd 2270 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ → ¬ 𝑛 = 0)
1211intnand 874 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → ¬ (𝑧 = 0 ∧ 𝑛 = 0))
1312adantl 271 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ¬ (𝑧 = 0 ∧ 𝑛 = 0))
14 gcdn0cl 10561 . . . . . . . . . . . 12 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ¬ (𝑧 = 0 ∧ 𝑛 = 0)) → (𝑧 gcd 𝑛) ∈ ℕ)
158, 9, 13, 14syl21anc 1169 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℕ)
1615nnne0d 8202 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ≠ 0)
17 dvdsval2 10406 . . . . . . . . . 10 (((𝑧 gcd 𝑛) ∈ ℤ ∧ (𝑧 gcd 𝑛) ≠ 0 ∧ 𝑧 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ↔ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ))
187, 16, 8, 17syl3anc 1170 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) ∥ 𝑧 ↔ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ))
194, 18mpbid 145 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ)
20193adant3 959 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ)
212simprd 112 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (𝑧 gcd 𝑛) ∥ 𝑛)
221, 21sylan2 280 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∥ 𝑛)
23 dvdsval2 10406 . . . . . . . . . . . 12 (((𝑧 gcd 𝑛) ∈ ℤ ∧ (𝑧 gcd 𝑛) ≠ 0 ∧ 𝑛 ∈ ℤ) → ((𝑧 gcd 𝑛) ∥ 𝑛 ↔ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ))
247, 16, 9, 23syl3anc 1170 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) ∥ 𝑛 ↔ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ))
2522, 24mpbid 145 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ)
26 nnre 8165 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 𝑛 ∈ ℝ)
2726adantl 271 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℝ)
286nn0red 8461 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℝ)
29 nngt0 8183 . . . . . . . . . . . 12 (𝑛 ∈ ℕ → 0 < 𝑛)
3029adantl 271 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < 𝑛)
3115nngt0d 8201 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < (𝑧 gcd 𝑛))
3227, 28, 30, 31divgt0d 8132 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 0 < (𝑛 / (𝑧 gcd 𝑛)))
3325, 32jca 300 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
34333adant3 959 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
35 elnnz 8494 . . . . . . . 8 ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℕ ↔ ((𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ 0 < (𝑛 / (𝑧 gcd 𝑛))))
3634, 35sylibr 132 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℕ)
37 opelxpi 4422 . . . . . . 7 (((𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℕ) → ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ ∈ (ℤ × ℕ))
3820, 36, 37syl2anc 403 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ ∈ (ℤ × ℕ))
39 fveq2 5229 . . . . . . . . . 10 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (1st𝑥) = (1st ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩))
40 simp1 939 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → 𝑧 ∈ ℤ)
41153adant3 959 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑧 gcd 𝑛) ∈ ℕ)
42 znq 8842 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ (𝑧 gcd 𝑛) ∈ ℕ) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℚ)
4340, 41, 42syl2anc 403 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑧 / (𝑧 gcd 𝑛)) ∈ ℚ)
4493adant3 959 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → 𝑛 ∈ ℤ)
45 znq 8842 . . . . . . . . . . . 12 ((𝑛 ∈ ℤ ∧ (𝑧 gcd 𝑛) ∈ ℕ) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℚ)
4644, 41, 45syl2anc 403 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (𝑛 / (𝑧 gcd 𝑛)) ∈ ℚ)
47 op1stg 5828 . . . . . . . . . . 11 (((𝑧 / (𝑧 gcd 𝑛)) ∈ ℚ ∧ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℚ) → (1st ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) = (𝑧 / (𝑧 gcd 𝑛)))
4843, 46, 47syl2anc 403 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (1st ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) = (𝑧 / (𝑧 gcd 𝑛)))
4939, 48sylan9eqr 2137 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → (1st𝑥) = (𝑧 / (𝑧 gcd 𝑛)))
50 fveq2 5229 . . . . . . . . . 10 (𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩ → (2nd𝑥) = (2nd ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩))
51 op2ndg 5829 . . . . . . . . . . 11 (((𝑧 / (𝑧 gcd 𝑛)) ∈ ℚ ∧ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℚ) → (2nd ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) = (𝑛 / (𝑧 gcd 𝑛)))
5243, 46, 51syl2anc 403 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (2nd ‘⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) = (𝑛 / (𝑧 gcd 𝑛)))
5350, 52sylan9eqr 2137 . . . . . . . . 9 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → (2nd𝑥) = (𝑛 / (𝑧 gcd 𝑛)))
5449, 53oveq12d 5581 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → ((1st𝑥) gcd (2nd𝑥)) = ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))))
5554eqeq1d 2091 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → (((1st𝑥) gcd (2nd𝑥)) = 1 ↔ ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1))
5649, 53oveq12d 5581 . . . . . . . 8 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → ((1st𝑥) / (2nd𝑥)) = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))
5756eqeq2d 2094 . . . . . . 7 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → (𝐴 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛)))))
5855, 57anbi12d 457 . . . . . 6 (((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) ∧ 𝑥 = ⟨(𝑧 / (𝑧 gcd 𝑛)), (𝑛 / (𝑧 gcd 𝑛))⟩) → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1 ∧ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))))
5919, 25gcdcld 10567 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) ∈ ℕ0)
6059nn0cnd 8462 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) ∈ ℂ)
61 1cnd 7249 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 1 ∈ ℂ)
626nn0cnd 8462 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) ∈ ℂ)
6315nnap0d 8203 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝑧 gcd 𝑛) # 0)
6462mulid1d 7250 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · 1) = (𝑧 gcd 𝑛))
65 zcn 8489 . . . . . . . . . . . . 13 (𝑧 ∈ ℤ → 𝑧 ∈ ℂ)
6665adantr 270 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑧 ∈ ℂ)
6766, 62, 63divcanap2d 7998 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) = 𝑧)
68 nncn 8166 . . . . . . . . . . . . 13 (𝑛 ∈ ℕ → 𝑛 ∈ ℂ)
6968adantl 271 . . . . . . . . . . . 12 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 ∈ ℂ)
7069, 62, 63divcanap2d 7998 . . . . . . . . . . 11 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛))) = 𝑛)
7167, 70oveq12d 5581 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = (𝑧 gcd 𝑛))
72 mulgcd 10612 . . . . . . . . . . 11 (((𝑧 gcd 𝑛) ∈ ℕ0 ∧ (𝑧 / (𝑧 gcd 𝑛)) ∈ ℤ ∧ (𝑛 / (𝑧 gcd 𝑛)) ∈ ℤ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))))
736, 19, 25, 72syl3anc 1170 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (((𝑧 gcd 𝑛) · (𝑧 / (𝑧 gcd 𝑛))) gcd ((𝑧 gcd 𝑛) · (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))))
7464, 71, 733eqtr2rd 2122 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 gcd 𝑛) · ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛)))) = ((𝑧 gcd 𝑛) · 1))
7560, 61, 62, 63, 74mulcanapad 7872 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1)
76753adant3 959 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1)
77 nnap0 8187 . . . . . . . . . . 11 (𝑛 ∈ ℕ → 𝑛 # 0)
7877adantl 271 . . . . . . . . . 10 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → 𝑛 # 0)
7966, 69, 62, 78, 63divcanap7d 8024 . . . . . . . . 9 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))) = (𝑧 / 𝑛))
8079eqeq2d 2094 . . . . . . . 8 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))) ↔ 𝐴 = (𝑧 / 𝑛)))
8180biimp3ar 1278 . . . . . . 7 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛))))
8276, 81jca 300 . . . . . 6 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (((𝑧 / (𝑧 gcd 𝑛)) gcd (𝑛 / (𝑧 gcd 𝑛))) = 1 ∧ 𝐴 = ((𝑧 / (𝑧 gcd 𝑛)) / (𝑛 / (𝑧 gcd 𝑛)))))
8338, 58, 82rspcedvd 2716 . . . . 5 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → ∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
84 elxp6 5847 . . . . . . 7 (𝑥 ∈ (ℤ × ℕ) ↔ (𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)))
85 elxp6 5847 . . . . . . 7 (𝑦 ∈ (ℤ × ℕ) ↔ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)))
86 simprl 498 . . . . . . . . . . . 12 ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) → (1st𝑥) ∈ ℤ)
8786ad2antrr 472 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (1st𝑥) ∈ ℤ)
88 simprr 499 . . . . . . . . . . . 12 ((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) → (2nd𝑥) ∈ ℕ)
8988ad2antrr 472 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (2nd𝑥) ∈ ℕ)
90 simprll 504 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) gcd (2nd𝑥)) = 1)
91 simprl 498 . . . . . . . . . . . 12 ((𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)) → (1st𝑦) ∈ ℤ)
9291ad2antlr 473 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (1st𝑦) ∈ ℤ)
93 simprr 499 . . . . . . . . . . . 12 ((𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ)) → (2nd𝑦) ∈ ℕ)
9493ad2antlr 473 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → (2nd𝑦) ∈ ℕ)
95 simprrl 506 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑦) gcd (2nd𝑦)) = 1)
96 simprlr 505 . . . . . . . . . . . 12 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝐴 = ((1st𝑥) / (2nd𝑥)))
97 simprrr 507 . . . . . . . . . . . 12 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝐴 = ((1st𝑦) / (2nd𝑦)))
9896, 97eqtr3d 2117 . . . . . . . . . . 11 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦)))
99 qredeq 10685 . . . . . . . . . . 11 ((((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ ∧ ((1st𝑥) gcd (2nd𝑥)) = 1) ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ ∧ ((1st𝑦) gcd (2nd𝑦)) = 1) ∧ ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦))) → ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
10087, 89, 90, 92, 94, 95, 98, 99syl331anc 1195 . . . . . . . . . 10 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
101 vex 2613 . . . . . . . . . . . 12 𝑥 ∈ V
102 1stexg 5845 . . . . . . . . . . . 12 (𝑥 ∈ V → (1st𝑥) ∈ V)
103101, 102ax-mp 7 . . . . . . . . . . 11 (1st𝑥) ∈ V
104 2ndexg 5846 . . . . . . . . . . . 12 (𝑥 ∈ V → (2nd𝑥) ∈ V)
105101, 104ax-mp 7 . . . . . . . . . . 11 (2nd𝑥) ∈ V
106103, 105opth 4020 . . . . . . . . . 10 (⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩ ↔ ((1st𝑥) = (1st𝑦) ∧ (2nd𝑥) = (2nd𝑦)))
107100, 106sylibr 132 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → ⟨(1st𝑥), (2nd𝑥)⟩ = ⟨(1st𝑦), (2nd𝑦)⟩)
108 simplll 500 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩)
109 simplrl 502 . . . . . . . . 9 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩)
110107, 108, 1093eqtr4d 2125 . . . . . . . 8 ((((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) ∧ ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦))))) → 𝑥 = 𝑦)
111110ex 113 . . . . . . 7 (((𝑥 = ⟨(1st𝑥), (2nd𝑥)⟩ ∧ ((1st𝑥) ∈ ℤ ∧ (2nd𝑥) ∈ ℕ)) ∧ (𝑦 = ⟨(1st𝑦), (2nd𝑦)⟩ ∧ ((1st𝑦) ∈ ℤ ∧ (2nd𝑦) ∈ ℕ))) → (((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))
11284, 85, 111syl2anb 285 . . . . . 6 ((𝑥 ∈ (ℤ × ℕ) ∧ 𝑦 ∈ (ℤ × ℕ)) → (((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))
113112rgen2a 2422 . . . . 5 𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)
11483, 113jctir 306 . . . 4 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ ∧ 𝐴 = (𝑧 / 𝑛)) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
1151143expia 1141 . . 3 ((𝑧 ∈ ℤ ∧ 𝑛 ∈ ℕ) → (𝐴 = (𝑧 / 𝑛) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦))))
116115rexlimivv 2487 . 2 (∃𝑧 ∈ ℤ ∃𝑛 ∈ ℕ 𝐴 = (𝑧 / 𝑛) → (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
117 elq 8840 . 2 (𝐴 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑛 ∈ ℕ 𝐴 = (𝑧 / 𝑛))
118 fveq2 5229 . . . . . 6 (𝑥 = 𝑦 → (1st𝑥) = (1st𝑦))
119 fveq2 5229 . . . . . 6 (𝑥 = 𝑦 → (2nd𝑥) = (2nd𝑦))
120118, 119oveq12d 5581 . . . . 5 (𝑥 = 𝑦 → ((1st𝑥) gcd (2nd𝑥)) = ((1st𝑦) gcd (2nd𝑦)))
121120eqeq1d 2091 . . . 4 (𝑥 = 𝑦 → (((1st𝑥) gcd (2nd𝑥)) = 1 ↔ ((1st𝑦) gcd (2nd𝑦)) = 1))
122118, 119oveq12d 5581 . . . . 5 (𝑥 = 𝑦 → ((1st𝑥) / (2nd𝑥)) = ((1st𝑦) / (2nd𝑦)))
123122eqeq2d 2094 . . . 4 (𝑥 = 𝑦 → (𝐴 = ((1st𝑥) / (2nd𝑥)) ↔ 𝐴 = ((1st𝑦) / (2nd𝑦))))
124121, 123anbi12d 457 . . 3 (𝑥 = 𝑦 → ((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))))
125124reu4 2795 . 2 (∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ↔ (∃𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ ∀𝑥 ∈ (ℤ × ℕ)∀𝑦 ∈ (ℤ × ℕ)(((((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))) ∧ (((1st𝑦) gcd (2nd𝑦)) = 1 ∧ 𝐴 = ((1st𝑦) / (2nd𝑦)))) → 𝑥 = 𝑦)))
126116, 117, 1253imtr4i 199 1 (𝐴 ∈ ℚ → ∃!𝑥 ∈ (ℤ × ℕ)(((1st𝑥) gcd (2nd𝑥)) = 1 ∧ 𝐴 = ((1st𝑥) / (2nd𝑥))))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103  w3a 920   = wceq 1285  wcel 1434  wne 2249  wral 2353  wrex 2354  ∃!wreu 2355  Vcvv 2610  cop 3419   class class class wbr 3805   × cxp 4389  cfv 4952  (class class class)co 5563  1st c1st 5816  2nd c2nd 5817  cc 7093  cr 7094  0cc0 7095  1c1 7096   · cmul 7100   < clt 7267   # cap 7800   / cdiv 7879  cn 8158  0cn0 8407  cz 8484  cq 8837  cdvds 10403   gcd cgcd 10545
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-mulrcl 7189  ax-addcom 7190  ax-mulcom 7191  ax-addass 7192  ax-mulass 7193  ax-distr 7194  ax-i2m1 7195  ax-0lt1 7196  ax-1rid 7197  ax-0id 7198  ax-rnegex 7199  ax-precex 7200  ax-cnre 7201  ax-pre-ltirr 7202  ax-pre-ltwlin 7203  ax-pre-lttrn 7204  ax-pre-apti 7205  ax-pre-ltadd 7206  ax-pre-mulgt0 7207  ax-pre-mulext 7208  ax-arch 7209  ax-caucvg 7210
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-po 4079  df-iso 4080  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-recs 5974  df-frec 6060  df-sup 6491  df-pnf 7269  df-mnf 7270  df-xr 7271  df-ltxr 7272  df-le 7273  df-sub 7400  df-neg 7401  df-reap 7794  df-ap 7801  df-div 7880  df-inn 8159  df-2 8217  df-3 8218  df-4 8219  df-n0 8408  df-z 8485  df-uz 8753  df-q 8838  df-rp 8868  df-fz 9158  df-fzo 9282  df-fl 9404  df-mod 9457  df-iseq 9574  df-iexp 9625  df-cj 9930  df-re 9931  df-im 9932  df-rsqrt 10085  df-abs 10086  df-dvds 10404  df-gcd 10546
This theorem is referenced by:  qnumdencl  10772  qnumdenbi  10777
  Copyright terms: Public domain W3C validator