ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qsel GIF version

Theorem qsel 6213
Description: If an element of a quotient set contains a given element, it is equal to the equivalence class of the element. (Contributed by Mario Carneiro, 12-Aug-2015.)
Assertion
Ref Expression
qsel ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)

Proof of Theorem qsel
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 eqid 2056 . . 3 (𝐴 / 𝑅) = (𝐴 / 𝑅)
2 eleq2 2117 . . . 4 ([𝑥]𝑅 = 𝐵 → (𝐶 ∈ [𝑥]𝑅𝐶𝐵))
3 eqeq1 2062 . . . 4 ([𝑥]𝑅 = 𝐵 → ([𝑥]𝑅 = [𝐶]𝑅𝐵 = [𝐶]𝑅))
42, 3imbi12d 227 . . 3 ([𝑥]𝑅 = 𝐵 → ((𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅) ↔ (𝐶𝐵𝐵 = [𝐶]𝑅)))
5 vex 2577 . . . . . 6 𝑥 ∈ V
6 elecg 6174 . . . . . 6 ((𝐶 ∈ [𝑥]𝑅𝑥 ∈ V) → (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶))
75, 6mpan2 409 . . . . 5 (𝐶 ∈ [𝑥]𝑅 → (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶))
87ibi 169 . . . 4 (𝐶 ∈ [𝑥]𝑅𝑥𝑅𝐶)
9 simpll 489 . . . . . 6 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → 𝑅 Er 𝑋)
10 simpr 107 . . . . . 6 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → 𝑥𝑅𝐶)
119, 10erthi 6182 . . . . 5 (((𝑅 Er 𝑋𝑥𝐴) ∧ 𝑥𝑅𝐶) → [𝑥]𝑅 = [𝐶]𝑅)
1211ex 112 . . . 4 ((𝑅 Er 𝑋𝑥𝐴) → (𝑥𝑅𝐶 → [𝑥]𝑅 = [𝐶]𝑅))
138, 12syl5 32 . . 3 ((𝑅 Er 𝑋𝑥𝐴) → (𝐶 ∈ [𝑥]𝑅 → [𝑥]𝑅 = [𝐶]𝑅))
141, 4, 13ectocld 6202 . 2 ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅)) → (𝐶𝐵𝐵 = [𝐶]𝑅))
15143impia 1112 1 ((𝑅 Er 𝑋𝐵 ∈ (𝐴 / 𝑅) ∧ 𝐶𝐵) → 𝐵 = [𝐶]𝑅)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 896   = wceq 1259  wcel 1409  Vcvv 2574   class class class wbr 3791   Er wer 6133  [cec 6134   / cqs 6135
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3902  ax-pow 3954  ax-pr 3971
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2787  df-un 2949  df-in 2951  df-ss 2958  df-pw 3388  df-sn 3408  df-pr 3409  df-op 3411  df-br 3792  df-opab 3846  df-xp 4378  df-rel 4379  df-cnv 4380  df-co 4381  df-dm 4382  df-rn 4383  df-res 4384  df-ima 4385  df-er 6136  df-ec 6138  df-qs 6142
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator