ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtri3or GIF version

Theorem qtri3or 9364
Description: Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
Assertion
Ref Expression
qtri3or ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))

Proof of Theorem qtri3or
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 8823 . . . 4 (𝑁 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
21biimpi 118 . . 3 (𝑁 ∈ ℚ → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
32adantl 271 . 2 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
4 elq 8823 . . . . . . 7 (𝑀 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
54biimpi 118 . . . . . 6 (𝑀 ∈ ℚ → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
65ad3antrrr 476 . . . . 5 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
7 simplrl 502 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
8 simplrr 503 . . . . . . . . . . . 12 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → 𝑤 ∈ ℕ)
98ad2antrr 472 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℕ)
109nnzd 8584 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℤ)
117, 10zmulcld 8591 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℤ)
12 simplrl 502 . . . . . . . . . . 11 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → 𝑧 ∈ ℤ)
1312ad2antrr 472 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℤ)
14 simplrr 503 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1514nnzd 8584 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
1613, 15zmulcld 8591 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑧 · 𝑦) ∈ ℤ)
17 ztri3or 8510 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℤ ∧ (𝑧 · 𝑦) ∈ ℤ) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)))
1811, 16, 17syl2anc 403 . . . . . . . 8 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)))
19 simpllr 501 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑁 = (𝑧 / 𝑤))
2019breq2d 3817 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 / 𝑦) < 𝑁 ↔ (𝑥 / 𝑦) < (𝑧 / 𝑤)))
21 breq1 3808 . . . . . . . . . . 11 (𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁 ↔ (𝑥 / 𝑦) < 𝑁))
2221adantl 271 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 < 𝑁 ↔ (𝑥 / 𝑦) < 𝑁))
237zred 8585 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℝ)
249nnrpd 8888 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℝ+)
2513zred 8585 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℝ)
2614nnrpd 8888 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℝ+)
2723, 24, 25, 26lt2mul2divd 8952 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ↔ (𝑥 / 𝑦) < (𝑧 / 𝑤)))
2820, 22, 273bitr4rd 219 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ↔ 𝑀 < 𝑁))
29 simpr 108 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑀 = (𝑥 / 𝑦))
3029, 19eqeq12d 2097 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 = 𝑁 ↔ (𝑥 / 𝑦) = (𝑧 / 𝑤)))
317zcnd 8586 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
3213zcnd 8586 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℂ)
3314nncnd 8155 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
3414nnap0d 8186 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 # 0)
3533, 34jca 300 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
369nncnd 8155 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℂ)
379nnap0d 8186 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 # 0)
3836, 37jca 300 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑤 ∈ ℂ ∧ 𝑤 # 0))
39 divmuleqap 7907 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0))) → ((𝑥 / 𝑦) = (𝑧 / 𝑤) ↔ (𝑥 · 𝑤) = (𝑧 · 𝑦)))
4031, 32, 35, 38, 39syl22anc 1171 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 / 𝑦) = (𝑧 / 𝑤) ↔ (𝑥 · 𝑤) = (𝑧 · 𝑦)))
4130, 40bitr2d 187 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑧 · 𝑦) ↔ 𝑀 = 𝑁))
4225, 26, 23, 24lt2mul2divd 8952 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑧 · 𝑦) < (𝑥 · 𝑤) ↔ (𝑧 / 𝑤) < (𝑥 / 𝑦)))
4319, 29breq12d 3818 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑁 < 𝑀 ↔ (𝑧 / 𝑤) < (𝑥 / 𝑦)))
4442, 43bitr4d 189 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑧 · 𝑦) < (𝑥 · 𝑤) ↔ 𝑁 < 𝑀))
4528, 41, 443orbi123d 1243 . . . . . . . 8 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)) ↔ (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
4618, 45mpbid 145 . . . . . . 7 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
4746ex 113 . . . . . 6 (((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
4847rexlimdvva 2489 . . . . 5 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
496, 48mpd 13 . . . 4 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
5049ex 113 . . 3 (((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑁 = (𝑧 / 𝑤) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
5150rexlimdvva 2489 . 2 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
523, 51mpd 13 1 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102  wb 103  w3o 919   = wceq 1285  wcel 1434  wrex 2354   class class class wbr 3805  (class class class)co 5563  cc 7076  0cc0 7078   · cmul 7083   < clt 7250   # cap 7783   / cdiv 7862  cn 8141  cz 8467  cq 8820
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7164  ax-resscn 7165  ax-1cn 7166  ax-1re 7167  ax-icn 7168  ax-addcl 7169  ax-addrcl 7170  ax-mulcl 7171  ax-mulrcl 7172  ax-addcom 7173  ax-mulcom 7174  ax-addass 7175  ax-mulass 7176  ax-distr 7177  ax-i2m1 7178  ax-0lt1 7179  ax-1rid 7180  ax-0id 7181  ax-rnegex 7182  ax-precex 7183  ax-cnre 7184  ax-pre-ltirr 7185  ax-pre-ltwlin 7186  ax-pre-lttrn 7187  ax-pre-apti 7188  ax-pre-ltadd 7189  ax-pre-mulgt0 7190  ax-pre-mulext 7191
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rmo 2361  df-rab 2362  df-v 2611  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-po 4079  df-iso 4080  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-1st 5818  df-2nd 5819  df-pnf 7252  df-mnf 7253  df-xr 7254  df-ltxr 7255  df-le 7256  df-sub 7383  df-neg 7384  df-reap 7777  df-ap 7784  df-div 7863  df-inn 8142  df-n0 8391  df-z 8468  df-q 8821  df-rp 8851
This theorem is referenced by:  qletric  9365  qlelttric  9366  qltnle  9367  qdceq  9368
  Copyright terms: Public domain W3C validator