ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  qtri3or GIF version

Theorem qtri3or 10020
Description: Rational trichotomy. (Contributed by Jim Kingdon, 6-Oct-2021.)
Assertion
Ref Expression
qtri3or ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))

Proof of Theorem qtri3or
Dummy variables 𝑤 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 9414 . . . 4 (𝑁 ∈ ℚ ↔ ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
21biimpi 119 . . 3 (𝑁 ∈ ℚ → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
32adantl 275 . 2 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → ∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤))
4 elq 9414 . . . . . . 7 (𝑀 ∈ ℚ ↔ ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
54biimpi 119 . . . . . 6 (𝑀 ∈ ℚ → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
65ad3antrrr 483 . . . . 5 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦))
7 simplrl 524 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℤ)
8 simplrr 525 . . . . . . . . . . . 12 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → 𝑤 ∈ ℕ)
98ad2antrr 479 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℕ)
109nnzd 9172 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℤ)
117, 10zmulcld 9179 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑥 · 𝑤) ∈ ℤ)
12 simplrl 524 . . . . . . . . . . 11 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → 𝑧 ∈ ℤ)
1312ad2antrr 479 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℤ)
14 simplrr 525 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℕ)
1514nnzd 9172 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℤ)
1613, 15zmulcld 9179 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑧 · 𝑦) ∈ ℤ)
17 ztri3or 9097 . . . . . . . . 9 (((𝑥 · 𝑤) ∈ ℤ ∧ (𝑧 · 𝑦) ∈ ℤ) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)))
1811, 16, 17syl2anc 408 . . . . . . . 8 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)))
19 simpllr 523 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑁 = (𝑧 / 𝑤))
2019breq2d 3941 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 / 𝑦) < 𝑁 ↔ (𝑥 / 𝑦) < (𝑧 / 𝑤)))
21 breq1 3932 . . . . . . . . . . 11 (𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁 ↔ (𝑥 / 𝑦) < 𝑁))
2221adantl 275 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 < 𝑁 ↔ (𝑥 / 𝑦) < 𝑁))
237zred 9173 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℝ)
249nnrpd 9482 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℝ+)
2513zred 9173 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℝ)
2614nnrpd 9482 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℝ+)
2723, 24, 25, 26lt2mul2divd 9552 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ↔ (𝑥 / 𝑦) < (𝑧 / 𝑤)))
2820, 22, 273bitr4rd 220 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) < (𝑧 · 𝑦) ↔ 𝑀 < 𝑁))
29 simpr 109 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑀 = (𝑥 / 𝑦))
3029, 19eqeq12d 2154 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 = 𝑁 ↔ (𝑥 / 𝑦) = (𝑧 / 𝑤)))
317zcnd 9174 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑥 ∈ ℂ)
3213zcnd 9174 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑧 ∈ ℂ)
3314nncnd 8734 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 ∈ ℂ)
3414nnap0d 8766 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑦 # 0)
3533, 34jca 304 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑦 ∈ ℂ ∧ 𝑦 # 0))
369nncnd 8734 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 ∈ ℂ)
379nnap0d 8766 . . . . . . . . . . . 12 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → 𝑤 # 0)
3836, 37jca 304 . . . . . . . . . . 11 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑤 ∈ ℂ ∧ 𝑤 # 0))
39 divmuleqap 8477 . . . . . . . . . . 11 (((𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ) ∧ ((𝑦 ∈ ℂ ∧ 𝑦 # 0) ∧ (𝑤 ∈ ℂ ∧ 𝑤 # 0))) → ((𝑥 / 𝑦) = (𝑧 / 𝑤) ↔ (𝑥 · 𝑤) = (𝑧 · 𝑦)))
4031, 32, 35, 38, 39syl22anc 1217 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 / 𝑦) = (𝑧 / 𝑤) ↔ (𝑥 · 𝑤) = (𝑧 · 𝑦)))
4130, 40bitr2d 188 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑥 · 𝑤) = (𝑧 · 𝑦) ↔ 𝑀 = 𝑁))
4225, 26, 23, 24lt2mul2divd 9552 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑧 · 𝑦) < (𝑥 · 𝑤) ↔ (𝑧 / 𝑤) < (𝑥 / 𝑦)))
4319, 29breq12d 3942 . . . . . . . . . 10 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑁 < 𝑀 ↔ (𝑧 / 𝑤) < (𝑥 / 𝑦)))
4442, 43bitr4d 190 . . . . . . . . 9 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → ((𝑧 · 𝑦) < (𝑥 · 𝑤) ↔ 𝑁 < 𝑀))
4528, 41, 443orbi123d 1289 . . . . . . . 8 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (((𝑥 · 𝑤) < (𝑧 · 𝑦) ∨ (𝑥 · 𝑤) = (𝑧 · 𝑦) ∨ (𝑧 · 𝑦) < (𝑥 · 𝑤)) ↔ (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
4618, 45mpbid 146 . . . . . . 7 ((((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) ∧ 𝑀 = (𝑥 / 𝑦)) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
4746ex 114 . . . . . 6 (((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ)) → (𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
4847rexlimdvva 2557 . . . . 5 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℕ 𝑀 = (𝑥 / 𝑦) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
496, 48mpd 13 . . . 4 ((((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) ∧ 𝑁 = (𝑧 / 𝑤)) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
5049ex 114 . . 3 (((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) ∧ (𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ)) → (𝑁 = (𝑧 / 𝑤) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
5150rexlimdvva 2557 . 2 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (∃𝑧 ∈ ℤ ∃𝑤 ∈ ℕ 𝑁 = (𝑧 / 𝑤) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀)))
523, 51mpd 13 1 ((𝑀 ∈ ℚ ∧ 𝑁 ∈ ℚ) → (𝑀 < 𝑁𝑀 = 𝑁𝑁 < 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3o 961   = wceq 1331  wcel 1480  wrex 2417   class class class wbr 3929  (class class class)co 5774  cc 7618  0cc0 7620   · cmul 7625   < clt 7800   # cap 8343   / cdiv 8432  cn 8720  cz 9054  cq 9411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-n0 8978  df-z 9055  df-q 9412  df-rp 9442
This theorem is referenced by:  qletric  10021  qlelttric  10022  qltnle  10023  qdceq  10024  fimaxq  10573
  Copyright terms: Public domain W3C validator