ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.21be GIF version

Theorem r19.21be 2427
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 21-Nov-1994.)
Hypothesis
Ref Expression
r19.21be.1 (𝜑 → ∀𝑥𝐴 𝜓)
Assertion
Ref Expression
r19.21be 𝑥𝐴 (𝜑𝜓)

Proof of Theorem r19.21be
StepHypRef Expression
1 r19.21be.1 . . . 4 (𝜑 → ∀𝑥𝐴 𝜓)
21r19.21bi 2424 . . 3 ((𝜑𝑥𝐴) → 𝜓)
32expcom 113 . 2 (𝑥𝐴 → (𝜑𝜓))
43rgen 2391 1 𝑥𝐴 (𝜑𝜓)
Colors of variables: wff set class
Syntax hints:  wi 4  wcel 1409  wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-gen 1354  ax-4 1416
This theorem depends on definitions:  df-bi 114  df-ral 2328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator