 Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  r19.32vr GIF version

Theorem r19.32vr 2458
 Description: One direction of Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. For decidable propositions this is an equivalence, as seen at r19.32vdc 2459. (Contributed by Jim Kingdon, 19-Aug-2018.)
Assertion
Ref Expression
r19.32vr ((𝜑 ∨ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.32vr
StepHypRef Expression
1 nfv 1421 . 2 𝑥𝜑
21r19.32r 2457 1 ((𝜑 ∨ ∀𝑥𝐴 𝜓) → ∀𝑥𝐴 (𝜑𝜓))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∨ wo 629  ∀wral 2306 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-io 630  ax-5 1336  ax-gen 1338  ax-4 1400  ax-17 1419 This theorem depends on definitions:  df-bi 110  df-nf 1350  df-ral 2311 This theorem is referenced by:  iinuniss  3737
 Copyright terms: Public domain W3C validator