![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > r19.3rm | GIF version |
Description: Restricted quantification of wff not containing quantified variable. (Contributed by Jim Kingdon, 19-Dec-2018.) |
Ref | Expression |
---|---|
r19.3rm.1 | ⊢ Ⅎxφ |
Ref | Expression |
---|---|
r19.3rm | ⊢ (∃y y ∈ A → (φ ↔ ∀x ∈ A φ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2097 | . . 3 ⊢ (𝑎 = y → (𝑎 ∈ A ↔ y ∈ A)) | |
2 | 1 | cbvexv 1792 | . 2 ⊢ (∃𝑎 𝑎 ∈ A ↔ ∃y y ∈ A) |
3 | eleq1 2097 | . . . 4 ⊢ (𝑎 = x → (𝑎 ∈ A ↔ x ∈ A)) | |
4 | 3 | cbvexv 1792 | . . 3 ⊢ (∃𝑎 𝑎 ∈ A ↔ ∃x x ∈ A) |
5 | biimt 230 | . . . 4 ⊢ (∃x x ∈ A → (φ ↔ (∃x x ∈ A → φ))) | |
6 | df-ral 2305 | . . . . 5 ⊢ (∀x ∈ A φ ↔ ∀x(x ∈ A → φ)) | |
7 | r19.3rm.1 | . . . . . 6 ⊢ Ⅎxφ | |
8 | 7 | 19.23 1565 | . . . . 5 ⊢ (∀x(x ∈ A → φ) ↔ (∃x x ∈ A → φ)) |
9 | 6, 8 | bitri 173 | . . . 4 ⊢ (∀x ∈ A φ ↔ (∃x x ∈ A → φ)) |
10 | 5, 9 | syl6bbr 187 | . . 3 ⊢ (∃x x ∈ A → (φ ↔ ∀x ∈ A φ)) |
11 | 4, 10 | sylbi 114 | . 2 ⊢ (∃𝑎 𝑎 ∈ A → (φ ↔ ∀x ∈ A φ)) |
12 | 2, 11 | sylbir 125 | 1 ⊢ (∃y y ∈ A → (φ ↔ ∀x ∈ A φ)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 98 ∀wal 1240 Ⅎwnf 1346 ∃wex 1378 ∈ wcel 1390 ∀wral 2300 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 99 ax-ia2 100 ax-ia3 101 ax-5 1333 ax-7 1334 ax-gen 1335 ax-ie1 1379 ax-ie2 1380 ax-8 1392 ax-4 1397 ax-17 1416 ax-i9 1420 ax-ial 1424 ax-i5r 1425 ax-ext 2019 |
This theorem depends on definitions: df-bi 110 df-nf 1347 df-cleq 2030 df-clel 2033 df-ral 2305 |
This theorem is referenced by: r19.28m 3305 r19.3rmv 3306 r19.27m 3310 indstr 8312 |
Copyright terms: Public domain | W3C validator |