![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rabbi | GIF version |
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 2598. (Contributed by NM, 25-Nov-2013.) |
Ref | Expression |
---|---|
rabbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2196 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒)) ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)}) | |
2 | df-ral 2358 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒))) | |
3 | pm5.32 441 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) | |
4 | 3 | albii 1400 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒)) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
5 | 2, 4 | bitri 182 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
6 | df-rab 2362 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
7 | df-rab 2362 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)} | |
8 | 6, 7 | eqeq12i 2096 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)}) |
9 | 1, 5, 8 | 3bitr4i 210 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 ∀wal 1283 = wceq 1285 ∈ wcel 1434 {cab 2069 ∀wral 2353 {crab 2357 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-11 1438 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-ral 2358 df-rab 2362 |
This theorem is referenced by: rabbidva 2598 |
Copyright terms: Public domain | W3C validator |