Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralbid GIF version

Theorem ralbid 2367
 Description: Formula-building rule for restricted universal quantifier (deduction rule). (Contributed by NM, 27-Jun-1998.)
Hypotheses
Ref Expression
ralbid.1 𝑥𝜑
ralbid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
ralbid (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))

Proof of Theorem ralbid
StepHypRef Expression
1 ralbid.1 . 2 𝑥𝜑
2 ralbid.2 . . 3 (𝜑 → (𝜓𝜒))
32adantr 270 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
41, 3ralbida 2363 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐴 𝜒))
 Colors of variables: wff set class Syntax hints:   → wi 4   ↔ wb 103  Ⅎwnf 1390   ∈ wcel 1434  ∀wral 2349 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-gen 1379  ax-4 1441 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-ral 2354 This theorem is referenced by:  ralbidv  2369  sbcralt  2891  riota5f  5523  lble  8092
 Copyright terms: Public domain W3C validator