ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raleqbidv GIF version

Theorem raleqbidv 2534
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 6-Nov-2007.)
Hypotheses
Ref Expression
raleqbidv.1 (𝜑𝐴 = 𝐵)
raleqbidv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
raleqbidv (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem raleqbidv
StepHypRef Expression
1 raleqbidv.1 . . 3 (𝜑𝐴 = 𝐵)
21raleqdv 2528 . 2 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜓))
3 raleqbidv.2 . . 3 (𝜑 → (𝜓𝜒))
43ralbidv 2343 . 2 (𝜑 → (∀𝑥𝐵 𝜓 ↔ ∀𝑥𝐵 𝜒))
52, 4bitrd 181 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 102   = wceq 1259  wral 2323
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328
This theorem is referenced by:  ofrfval  5747  fmpt2x  5853  tfrlemi1  5976  supeq123d  6396  cvg1nlemcau  9804  cvg1nlemres  9805  cau3lem  9933  sscoll2  10472
  Copyright terms: Public domain W3C validator