Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralimdaa GIF version

Theorem ralimdaa 2403
 Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.20 of [Margaris] p. 90. (Contributed by NM, 22-Sep-2003.)
Hypotheses
Ref Expression
ralimdaa.1 𝑥𝜑
ralimdaa.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
ralimdaa (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ralimdaa
StepHypRef Expression
1 ralimdaa.1 . . 3 𝑥𝜑
2 ralimdaa.2 . . . . 5 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ex 112 . . . 4 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
43a2d 26 . . 3 (𝜑 → ((𝑥𝐴𝜓) → (𝑥𝐴𝜒)))
51, 4alimd 1430 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) → ∀𝑥(𝑥𝐴𝜒)))
6 df-ral 2328 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
7 df-ral 2328 . 2 (∀𝑥𝐴 𝜒 ↔ ∀𝑥(𝑥𝐴𝜒))
85, 6, 73imtr4g 198 1 (𝜑 → (∀𝑥𝐴 𝜓 → ∀𝑥𝐴 𝜒))
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 101  ∀wal 1257  Ⅎwnf 1365   ∈ wcel 1409  ∀wral 2323 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-5 1352  ax-gen 1354  ax-4 1416 This theorem depends on definitions:  df-bi 114  df-nf 1366  df-ral 2328 This theorem is referenced by:  ralimdva  2404
 Copyright terms: Public domain W3C validator