ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ralsng GIF version

Theorem ralsng 3441
Description: Substitution expressed in terms of quantification over a singleton. (Contributed by NM, 14-Dec-2005.) (Revised by Mario Carneiro, 23-Apr-2015.)
Hypothesis
Ref Expression
ralsng.1 (𝑥 = 𝐴 → (𝜑𝜓))
Assertion
Ref Expression
ralsng (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Distinct variable groups:   𝑥,𝐴   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥)

Proof of Theorem ralsng
StepHypRef Expression
1 ralsns 3439 . 2 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑[𝐴 / 𝑥]𝜑))
2 ralsng.1 . . 3 (𝑥 = 𝐴 → (𝜑𝜓))
32sbcieg 2847 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝜑𝜓))
41, 3bitrd 186 1 (𝐴𝑉 → (∀𝑥 ∈ {𝐴}𝜑𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 103   = wceq 1285  wcel 1434  wral 2349  [wsbc 2816  {csn 3406
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-v 2604  df-sbc 2817  df-sn 3412
This theorem is referenced by:  ralsn  3444  ralprg  3451  raltpg  3453  ralunsn  3597  iinxsng  3759  posng  4438  fimaxre2  10247
  Copyright terms: Public domain W3C validator