ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  raluz2 GIF version

Theorem raluz2 8618
Description: Restricted universal quantification in an upper set of integers. (Contributed by NM, 9-Sep-2005.)
Assertion
Ref Expression
raluz2 (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Distinct variable group:   𝑛,𝑀
Allowed substitution hint:   𝜑(𝑛)

Proof of Theorem raluz2
StepHypRef Expression
1 eluz2 8575 . . . . . 6 (𝑛 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛))
2 3anass 900 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑛 ∈ ℤ ∧ 𝑀𝑛) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)))
31, 2bitri 177 . . . . 5 (𝑛 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)))
43imbi1i 231 . . . 4 ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ ((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑))
5 impexp 254 . . . . . 6 (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑)))
6 impexp 254 . . . . . . 7 (((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀𝑛𝜑)))
76imbi2i 219 . . . . . 6 ((𝑀 ∈ ℤ → ((𝑛 ∈ ℤ ∧ 𝑀𝑛) → 𝜑)) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀𝑛𝜑))))
85, 7bitri 177 . . . . 5 (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑) ↔ (𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀𝑛𝜑))))
9 bi2.04 241 . . . . 5 ((𝑀 ∈ ℤ → (𝑛 ∈ ℤ → (𝑀𝑛𝜑))) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀𝑛𝜑))))
108, 9bitri 177 . . . 4 (((𝑀 ∈ ℤ ∧ (𝑛 ∈ ℤ ∧ 𝑀𝑛)) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀𝑛𝜑))))
114, 10bitri 177 . . 3 ((𝑛 ∈ (ℤ𝑀) → 𝜑) ↔ (𝑛 ∈ ℤ → (𝑀 ∈ ℤ → (𝑀𝑛𝜑))))
1211ralbii2 2351 . 2 (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ ∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀𝑛𝜑)))
13 r19.21v 2413 . 2 (∀𝑛 ∈ ℤ (𝑀 ∈ ℤ → (𝑀𝑛𝜑)) ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
1412, 13bitri 177 1 (∀𝑛 ∈ (ℤ𝑀)𝜑 ↔ (𝑀 ∈ ℤ → ∀𝑛 ∈ ℤ (𝑀𝑛𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 101  wb 102  w3a 896  wcel 1409  wral 2323   class class class wbr 3792  cfv 4930  cle 7120  cz 8302  cuz 8569
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-cnex 7033  ax-resscn 7034
This theorem depends on definitions:  df-bi 114  df-3or 897  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-rab 2332  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-fv 4938  df-ov 5543  df-neg 7248  df-z 8303  df-uz 8570
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator