ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgeq2 GIF version

Theorem rdgeq2 5990
Description: Equality theorem for the recursive definition generator. (Contributed by NM, 9-Apr-1995.) (Revised by Mario Carneiro, 9-May-2015.)
Assertion
Ref Expression
rdgeq2 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))

Proof of Theorem rdgeq2
Dummy variables 𝑥 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 uneq1 3118 . . . 4 (𝐴 = 𝐵 → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) = (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
21mpteq2dv 3876 . . 3 (𝐴 = 𝐵 → (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
3 recseq 5952 . . 3 ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = (𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) → recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) = recs((𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))))
42, 3syl 14 . 2 (𝐴 = 𝐵 → recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) = recs((𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))))
5 df-irdg 5988 . 2 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
6 df-irdg 5988 . 2 rec(𝐹, 𝐵) = recs((𝑔 ∈ V ↦ (𝐵 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
74, 5, 63eqtr4g 2113 1 (𝐴 = 𝐵 → rec(𝐹, 𝐴) = rec(𝐹, 𝐵))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1259  Vcvv 2574  cun 2943   ciun 3685  cmpt 3846  dom cdm 4373  cfv 4930  recscrecs 5950  reccrdg 5987
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-un 2950  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-iota 4895  df-fv 4938  df-recs 5951  df-irdg 5988
This theorem is referenced by:  rdg0g  6006  oav  6065
  Copyright terms: Public domain W3C validator