ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgfun GIF version

Theorem rdgfun 6042
Description: The recursive definition generator is a function. (Contributed by Mario Carneiro, 16-Nov-2014.)
Assertion
Ref Expression
rdgfun Fun rec(𝐹, 𝐴)

Proof of Theorem rdgfun
Dummy variables 𝑥 𝑦 𝑧 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2083 . . 3 {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑓𝑧) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(𝑓𝑧)))} = {𝑓 ∣ ∃𝑦 ∈ On (𝑓 Fn 𝑦 ∧ ∀𝑧𝑦 (𝑓𝑧) = ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘(𝑓𝑧)))}
21tfrlem7 5986 . 2 Fun recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
3 df-irdg 6039 . . 3 rec(𝐹, 𝐴) = recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
43funeqi 4972 . 2 (Fun rec(𝐹, 𝐴) ↔ Fun recs((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))))
52, 4mpbir 144 1 Fun rec(𝐹, 𝐴)
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1285  {cab 2069  wral 2353  wrex 2354  Vcvv 2610  cun 2980   ciun 3698  cmpt 3859  Oncon0 4146  dom cdm 4391  cres 4393  Fun wfun 4946   Fn wfn 4947  cfv 4952  recscrecs 5973  reccrdg 6038
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-setind 4308
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-res 4403  df-iota 4917  df-fun 4954  df-fn 4955  df-fv 4960  df-recs 5974  df-irdg 6039
This theorem is referenced by:  rdgivallem  6050
  Copyright terms: Public domain W3C validator