Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgifnon GIF version

Theorem rdgifnon 5906
 Description: The recursive definition generator is a function on ordinal numbers. The 𝐹 Fn V condition states that the characteristic function is defined for all sets (being defined for all ordinals might be enough if being used in a manner similar to rdgon 5913; in cases like df-oadd 5944 either presumably could work). (Contributed by Jim Kingdon, 13-Jul-2019.)
Assertion
Ref Expression
rdgifnon ((𝐹 Fn V A 𝑉) → rec(𝐹, A) Fn On)

Proof of Theorem rdgifnon
Dummy variables f g x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-irdg 5897 . 2 rec(𝐹, A) = recs((g V ↦ (A x dom g(𝐹‘(gx)))))
2 rdgruledefgg 5902 . . 3 ((𝐹 Fn V A 𝑉) → (Fun (g V ↦ (A x dom g(𝐹‘(gx)))) ((g V ↦ (A x dom g(𝐹‘(gx))))‘f) V))
32alrimiv 1751 . 2 ((𝐹 Fn V A 𝑉) → f(Fun (g V ↦ (A x dom g(𝐹‘(gx)))) ((g V ↦ (A x dom g(𝐹‘(gx))))‘f) V))
41, 3tfri1d 5890 1 ((𝐹 Fn V A 𝑉) → rec(𝐹, A) Fn On)
 Colors of variables: wff set class Syntax hints:   → wi 4   ∧ wa 97   ∈ wcel 1390  Vcvv 2551   ∪ cun 2909  ∪ ciun 3648   ↦ cmpt 3809  Oncon0 4066  dom cdm 4288  Fun wfun 4839   Fn wfn 4840  ‘cfv 4845  reccrdg 5896 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 99  ax-ia2 100  ax-ia3 101  ax-in1 544  ax-in2 545  ax-io 629  ax-5 1333  ax-7 1334  ax-gen 1335  ax-ie1 1379  ax-ie2 1380  ax-8 1392  ax-10 1393  ax-11 1394  ax-i12 1395  ax-bndl 1396  ax-4 1397  ax-13 1401  ax-14 1402  ax-17 1416  ax-i9 1420  ax-ial 1424  ax-i5r 1425  ax-ext 2019  ax-coll 3863  ax-sep 3866  ax-pow 3918  ax-pr 3935  ax-un 4136  ax-setind 4220 This theorem depends on definitions:  df-bi 110  df-3an 886  df-tru 1245  df-fal 1248  df-nf 1347  df-sb 1643  df-eu 1900  df-mo 1901  df-clab 2024  df-cleq 2030  df-clel 2033  df-nfc 2164  df-ne 2203  df-ral 2305  df-rex 2306  df-reu 2307  df-rab 2309  df-v 2553  df-sbc 2759  df-csb 2847  df-dif 2914  df-un 2916  df-in 2918  df-ss 2925  df-nul 3219  df-pw 3353  df-sn 3373  df-pr 3374  df-op 3376  df-uni 3572  df-iun 3650  df-br 3756  df-opab 3810  df-mpt 3811  df-tr 3846  df-id 4021  df-iord 4069  df-on 4071  df-suc 4074  df-xp 4294  df-rel 4295  df-cnv 4296  df-co 4297  df-dm 4298  df-rn 4299  df-res 4300  df-ima 4301  df-iota 4810  df-fun 4847  df-fn 4848  df-f 4849  df-f1 4850  df-fo 4851  df-f1o 4852  df-fv 4853  df-recs 5861  df-irdg 5897 This theorem is referenced by:  rdgivallem  5908
 Copyright terms: Public domain W3C validator