![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > rdgival | GIF version |
Description: Value of the recursive definition generator. (Contributed by Jim Kingdon, 26-Jul-2019.) |
Ref | Expression |
---|---|
rdgival | ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rdgivallem 6050 | . 2 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)))) | |
2 | fvres 5250 | . . . . 5 ⊢ (𝑥 ∈ 𝐵 → ((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥) = (rec(𝐹, 𝐴)‘𝑥)) | |
3 | 2 | fveq2d 5233 | . . . 4 ⊢ (𝑥 ∈ 𝐵 → (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) = (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) |
4 | 3 | iuneq2i 3716 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥)) = ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)) |
5 | 4 | uneq2i 3133 | . 2 ⊢ (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘((rec(𝐹, 𝐴) ↾ 𝐵)‘𝑥))) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥))) |
6 | 1, 5 | syl6eq 2131 | 1 ⊢ ((𝐹 Fn V ∧ 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ On) → (rec(𝐹, 𝐴)‘𝐵) = (𝐴 ∪ ∪ 𝑥 ∈ 𝐵 (𝐹‘(rec(𝐹, 𝐴)‘𝑥)))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ w3a 920 = wceq 1285 ∈ wcel 1434 Vcvv 2610 ∪ cun 2980 ∪ ciun 3698 Oncon0 4146 ↾ cres 4393 Fn wfn 4947 ‘cfv 4952 reccrdg 6038 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 577 ax-in2 578 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-13 1445 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 ax-coll 3913 ax-sep 3916 ax-pow 3968 ax-pr 3992 ax-un 4216 ax-setind 4308 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-fal 1291 df-nf 1391 df-sb 1688 df-eu 1946 df-mo 1947 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-ne 2250 df-ral 2358 df-rex 2359 df-reu 2360 df-rab 2362 df-v 2612 df-sbc 2825 df-csb 2918 df-dif 2984 df-un 2986 df-in 2988 df-ss 2995 df-nul 3268 df-pw 3402 df-sn 3422 df-pr 3423 df-op 3425 df-uni 3622 df-iun 3700 df-br 3806 df-opab 3860 df-mpt 3861 df-tr 3896 df-id 4076 df-iord 4149 df-on 4151 df-suc 4154 df-xp 4397 df-rel 4398 df-cnv 4399 df-co 4400 df-dm 4401 df-rn 4402 df-res 4403 df-ima 4404 df-iota 4917 df-fun 4954 df-fn 4955 df-f 4956 df-f1 4957 df-fo 4958 df-f1o 4959 df-fv 4960 df-recs 5974 df-irdg 6039 |
This theorem is referenced by: rdgss 6052 rdgisuc1 6053 rdgisucinc 6054 oav2 6127 omv2 6129 |
Copyright terms: Public domain | W3C validator |