ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rdgruledefgg GIF version

Theorem rdgruledefgg 6024
Description: The recursion rule for the recursive definition generator is defined everywhere. (Contributed by Jim Kingdon, 4-Jul-2019.)
Assertion
Ref Expression
rdgruledefgg ((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Distinct variable groups:   𝐴,𝑔   𝑥,𝑔,𝐹
Allowed substitution hints:   𝐴(𝑥,𝑓)   𝐹(𝑓)   𝑉(𝑥,𝑓,𝑔)

Proof of Theorem rdgruledefgg
StepHypRef Expression
1 elex 2611 . 2 (𝐴𝑉𝐴 ∈ V)
2 funmpt 4968 . . . 4 Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))
3 vex 2605 . . . . 5 𝑓 ∈ V
4 vex 2605 . . . . . . . . . . . . 13 𝑔 ∈ V
5 vex 2605 . . . . . . . . . . . . 13 𝑥 ∈ V
64, 5fvex 5226 . . . . . . . . . . . 12 (𝑔𝑥) ∈ V
7 funfvex 5223 . . . . . . . . . . . . 13 ((Fun 𝐹 ∧ (𝑔𝑥) ∈ dom 𝐹) → (𝐹‘(𝑔𝑥)) ∈ V)
87funfni 5030 . . . . . . . . . . . 12 ((𝐹 Fn V ∧ (𝑔𝑥) ∈ V) → (𝐹‘(𝑔𝑥)) ∈ V)
96, 8mpan2 416 . . . . . . . . . . 11 (𝐹 Fn V → (𝐹‘(𝑔𝑥)) ∈ V)
109ralrimivw 2436 . . . . . . . . . 10 (𝐹 Fn V → ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
114dmex 4626 . . . . . . . . . . 11 dom 𝑔 ∈ V
12 iunexg 5777 . . . . . . . . . . 11 ((dom 𝑔 ∈ V ∧ ∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
1311, 12mpan 415 . . . . . . . . . 10 (∀𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
1410, 13syl 14 . . . . . . . . 9 (𝐹 Fn V → 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V)
15 unexg 4204 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)) ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1614, 15sylan2 280 . . . . . . . 8 ((𝐴 ∈ V ∧ 𝐹 Fn V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1716ancoms 264 . . . . . . 7 ((𝐹 Fn V ∧ 𝐴 ∈ V) → (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
1817ralrimivw 2436 . . . . . 6 ((𝐹 Fn V ∧ 𝐴 ∈ V) → ∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V)
19 dmmptg 4848 . . . . . 6 (∀𝑔 ∈ V (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))) ∈ V → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
2018, 19syl 14 . . . . 5 ((𝐹 Fn V ∧ 𝐴 ∈ V) → dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) = V)
213, 20syl5eleqr 2169 . . . 4 ((𝐹 Fn V ∧ 𝐴 ∈ V) → 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))))
22 funfvex 5223 . . . 4 ((Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ 𝑓 ∈ dom (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
232, 21, 22sylancr 405 . . 3 ((𝐹 Fn V ∧ 𝐴 ∈ V) → ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V)
2423, 2jctil 305 . 2 ((𝐹 Fn V ∧ 𝐴 ∈ V) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
251, 24sylan2 280 1 ((𝐹 Fn V ∧ 𝐴𝑉) → (Fun (𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥)))) ∧ ((𝑔 ∈ V ↦ (𝐴 𝑥 ∈ dom 𝑔(𝐹‘(𝑔𝑥))))‘𝑓) ∈ V))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 102   = wceq 1285  wcel 1434  wral 2349  Vcvv 2602  cun 2972   ciun 3686  cmpt 3847  dom cdm 4371  Fun wfun 4926   Fn wfn 4927  cfv 4932
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3901  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-f1 4937  df-fo 4938  df-f1o 4939  df-fv 4940
This theorem is referenced by:  rdgruledefg  6025  rdgexggg  6026  rdgifnon  6028  rdgivallem  6030
  Copyright terms: Public domain W3C validator